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NOTATION LIST 

 

A = cross-sectional area 

B = channel width 

C = concentration 



C  = mean concentration 

C′ = deviation from mean concentration  

'*C  =  dimensionless concentration  

C0 = initial concentration 

C1 = concentration in the flowing zone (Reichert and Wanner, 1991) 

C2 = concentration in the stagnant zone (Reichert and Wanner, 1991) 

'*

1C  = dimensionless concentration in the flowing zone  

'*

2C  = dimensionless concentration in the stagnant zone 

Cd = concentration in the dead zone (dead zone model) 

Cp = peak concentration 

Cm = concentration in the main channel (dead zone model) 

cf = alternative dimensionless dispersion coefficient (Fischer, 1975) 

D = diffusion coefficient 

Dx = mixing coefficient in x direction 

Dy = mixing coefficient in y direction 

Fnx = n
th

 spatial moment in flowing zone 

g = numerator of the spatial skewness coefficient, γ 

gt  = numerator of the temporal skewness coefficient, γ 
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gtm = numerator of the measured temporal skewness coefficient, γ 

h = channel depth 

I  = area under the dimensionless time-concentration curve 

K = dispersion coefficient 

Kx = longitudinal dispersion coefficient 

k = longitudinal curvilinear dispersion coefficient 

k = transverse curvilinear dispersion coefficient 

L = length 

LG = distance to Gaussian zone 

Lt = transverse length 

Lx = advective length 

M = mass of tracer 

M  = mass transport 

M0 = initial mass of tracer injected 

M0f = mass in the flowing zone 

M0s = mass in the stagnant zone 

Mn = nth moment  

Mnx = n
th

 spatial moment 

Mnt = n
th

 temporal moment 

m = metric longitudinal curvilinear coefficient 

m = metric transverse curvilinear coefficient 

Q = discharge 
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q = cumulative discharge 

qe = transfer coefficient 

Snx  = n
th

 spatial moment in stagnant zone 

Tc = scaling parameter (Day and Wood, 1976) 

tp = time to peak 

t = time 

t′ = dimensionless time 

ta = time of advection 

teq = time to equilibrium 

U = velocity in the x-direction 

U  = mean velocity in the x-direction 

U′ = deviation from mean velocity in x-direction 

u* = shear velocity 

Vs  = volume of solute 

V = depth-averaged transverse velocity 

v = depth-averaged longitudinal curvilinear velocity 

v = depth-averaged transverse curvilinear velocity 

x = longitudinal coordinate 

x′ = dimensionless distance 

y = transverse coordinate 

z = vertical coordinate 

 = ratio of channel occupied by stagnant zone to main channel 

* 
=

 
coefficient for advective length 
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c = curvilinear coordinate for the longitudinal distance 

d = mass exchange coefficient between main channel and dead zone 

x = dimensionless dispersion coefficient 

β = normalized transfer coefficient 

c = curvilinear coordinate for the transverse distance 

d = ratio of area in dead zone to area in main channel 

γ = skewness coefficient 

t  = temporal skewness coefficient 

x  = temporal skewness coefficient 

γp  = dimensionless width of pulse (Reichert and Wanner, 1991) 

Δx = initial width of pulse (Reichert and Wanner, 1991) 

(x) = Dirac delta function 

εy = lateral mixing coefficient 

 = dimensionless transverse mixing coefficient 

μ = center of mass 

μt =  temporal center of mass 

μtm = measured temporal center of mass  

μx = spatial center of mass 

μf = spatial center of mass in flowing zone 

μs = spatial center of mass in stagnant zone 

σ0 = initial spread of pulse 

σ
2
 = variance 
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2

t  
= temporal variance 

2

tm  = measured temporal variance 

2

x  = spatial variance 

2

f  = spatial variance in flowing zone 

2

s  = spatial variance 

 = time in transformed coordinate system 

 = Lagrangian coordinate for flow direction 

ψ  = dimensionless width of the pulse 
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ABSTRACT 

An analytical solution of a model of contaminant transport in the advective zone of 

rivers was derived and tested. Although the standard one-dimensional model of transport 

cannot be applied near the contaminant source, the transport model proposed by Reichert and 

Wanner (1991), which requires only one more parameter to be specified, applies over much 

of the advective zone. The model was solved with Laplace transforms for the case of a 

Gaussian pulse injected into the center of the channel and verified through an analysis of the 

spatial and temporal moments. The moment analysis demonstrated the importance of 

carefully evaluating the integrals in the analytical solution. To help in applying the model to 

field measurements, the effects of the model parameters were investigated and a procedure 

for determining the parameters from measurements was devised. The model was applied to 

measurements in the advective zone of a mountain stream. Predictions from the Reichert and 

Wanner model fit the measurements—especially the peak concentration and arrival time—

better than predictions from the one-dimensional model.   
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CHAPTER 1: INTRODUCTION 

Significance 

Despite the limitations in describing tracer response curves in real channels, solutions 

of the one-dimensional advection-dispersion equation, such as the one developed by Taylor, 

are still used to compute contaminant transport. However, because the one-dimensional 

approach applies only after a balance between longitudinal advection and transverse 

dispersion has been reached, other models must be used to compute concentrations in the 

near-field, or the ‘advective zone’. In many rivers, this length of the advective zone is several 

hundred kilometers long.  Reichert and Wanner (1991) developed and evaluated a model that 

consists of a flowing zone and a stagnant zone; instead of the single parameter (i.e., the 

dispersion coefficient) in the one-dimensional model, it involves two parameters: the fraction 

of the channel occupied by the stagnant zone, α, and a transfer coefficient, qe. However, 

because the authors did not give details on how they computed concentrations with their 

model, its application for those who model dispersion processes within the advective zone is 

limited.    

Objectives 

 This work aims to (i) obtain and verify an analytical solution of the Reichert and 

Wanner (1991) advective zone model; (ii) understand the behavior of the model by analyzing 

spatial and temporal moments; and (iii) apply the analytical solution to field data measured 

within the advective zone.   
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 The analytical solution is obtained through the application of an iterative Laplace 

transform given by Sneddon (1972).  This process has been applied successfully by De 

Smedt et al. (2005) in the derivation of an analytical solution of the dead zone model.  The 

behavior of the model is analyzed with the analytical expressions for the spatial and temporal 

moments.  These expressions were obtained through solving a set of ordinary differential 

equations (for the spatial case) and through Laplace transforms (for the temporal case).  

These solutions also serve as verification of the analytical solution.  Finally, the analytical 

solution to the Reichert and Wanner model is applied to field data measured by Day (1975) 

in the advective zone of a mountainous stream.  The predicted results from this analysis are 

compared with the measured concentration curves and the predicted results from Taylor’s 

dispersion model.   

Organization 

 In this thesis, a background of mechanisms controlling dispersion, as well as a review 

of existing work in dispersion modeling is presented in Chapter 2.  Chapter 3 addresses the 

development of the analytical solution, the methods for verifying the solution, and the 

methods for applying the solution to measured data.  In Chapter 4, the predicted temporal and 

spatial concentration curves, as well as the moments derived from the integration of the 

predicted curves, are presented and discussed.  A summary of this work, as well as 

recommendations for future work, is given in Chapter 5. 
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

Introduction 

Contaminant transport in natural channels is a critical issue in the field of 

environmental engineering, and as a result, the processes controlling mixing and movement 

in channels have been extensively studied so that contaminant transport can be modeled 

effectively and accurately.  Longitudinal dispersion describes the spreading of contaminants 

or tracers along the flow direction. It is a necessary process to include when estimating the 

arrival time, concentration, and spread of a contaminant.  The methods used to model 

longitudinal dispersion vary in their assumptions regarding flow processes, mathematical 

complexity, and applicability with respect to channel location.  This chapter outlines the 

development and appropriate application of various models for predicting concentrations of 

contaminants; additionally, it addresses the areas where additional research and development 

would improve current longitudinal dispersion models.   

Mechanisms Controlling Longitudinal Dispersion 

Velocity gradients cause longitudinal dispersion. Transverse gradients of velocity 

arise because velocities are zero at the channel boundaries—i.e., banks for natural channels. 

Tracer particles move across the channel cross section because of motions in eddies. When 

travelling, they experience different velocities and some tracer parcels move faster than 

others. As a result, the tracer cloud spreads along the channel as it moves downstream. The 

contributions of vertical velocity shear and vertical diffusion are often ignored when 

analyzing longitudinal mixing because natural channels have much greater widths than 
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depths and the tracer becomes well-mixed over the channel depth shortly after injection.  The 

contribution of longitudinal diffusion can also be ignored because it is small compared to 

effects of transverse velocity shear. Therefore, longitudinal dispersion depends mainly on 

transverse velocity shear and transverse diffusion.  Over time, these terms eventually reach 

equilibrium, and the variance of the tracer distribution grows linearly, as shown by the 

analysis of Taylor (1953). This balance only holds true if other mechanisms do not 

significantly contribute to longitudinal dispersion.  This is not always the case, especially in 

natural channels.   

Natural channels include additional mechanisms that influence mixing, specifically 

exchange between the main channel and dead zones.  A dead zone is a region of irregular 

flow compared to the flow regime in the main channel. Irregularities can be caused by 

eddying or stagnant flow. These irregularities increase dispersion in the channel (Fischer et 

al., 1979). Increased dispersion lengthens the time it takes for the transverse velocity shear 

and transverse diffusion to reach equilibrium (Valentine and Wood, 1977). Until equilibrium 

is reached, the tracer distribution will exhibit a skew. This skew is observed in field studies in 

the form of a long tail in tracer response curves (Nordin and Sabol, 1974; Day, 1975).  The 

persisting skew complicates the analysis of field results, and as a result, some researchers 

have chosen to ignore it.  Fischer (1968) ignored the tail of the recorded response curves and 

found that the non-tail portion of the curve agreed well with Taylor’s analysis.  In cases 

where researchers choose not to ignore the tail, alternative models were used to describe 

longitudinal dispersion (Nordin and Troutman, 1980; Legrand-Marcq and Laudelout, 1985; 

Davis et al., 2000).  The most common alternative model, which will be discussed later, is 

the dead zone model.   
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Taylor’s Analysis 

The conventional approach used to describe shear dispersion in natural channels is 

based on Taylor’s analysis of diffusion (Taylor 1953, 1954).  Taylor’s analysis shows that 

over time the longitudinal advection and transverse mixing reach equilibrium. Once 

equilibrium is reached, diffusion can be modeled as a Fickian process, in which the variance 

of the tracer concentration distribution increases linearly with time. Taylor applied his 

analysis to describe longitudinal mixing of a contaminant in laminar and turbulent flow 

through a pipe (Taylor, 1953 and Taylor, 1954, respectively). Elder (1959) extended this 

analysis to include the effects of vertical shear, and Fischer (1966) used it to compute 

longitudinal dispersion in open channels. Taylor’s theory, when applied to pipe and open 

channel flow, has been verified by several laboratory studies (Fischer, 1966; Sayre, 1968; 

Sayre and Chang, 1968).  Additionally, Aris (1956) confirmed Taylor’s results through his 

independent analysis using the method of moments.  

In order to understand the major assumption behind Taylor’s analysis and the 

conditions under which the analysis does not apply, the one-dimensional advection-

dispersion equation (1-D ADE)  is derived following the analysis in Fischer et al. (1979, 

section 4.1.4).  This analysis starts with the two-dimensional advection-diffusion equation for 

concentration C given by 

  

  
  

  

  
  [

   

   
 

   

   
]        (1) 

where U is the velocity in the x-direction and D is the molecular diffusivity. Eq. 1 assumes 

that flow is in the x-direction and that the velocity components in the transverse and vertical 

directions are zero.  Additionally, this equation assumes that the concentration is uniform 
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over the depth.  The velocity and concentration can be written as the sum of the cross-

sectional average and the deviation from the average:  

  (   )   ̅    (   )       (2) 

 (     )   ̅    (     )       (3) 

where  

 ̅  
 

 
∫     
 

 
        (4) 

and 

 ̅  
 

 
∫     
 

 
         (5) 

and B is the width of the channel. The transport equation can be re-written as 

 

  
( ̅    )  ( ̅    )

 

  
( ̅    )   [

  

   ( ̅    )  
    

   ]  (6)  

To simplify the expression further, the coordinate system can be defined in Lagrangian 

terms, i.e., moving with the flow, so that 

     ̅          (7) 

             (8) 

Changing the coordinate system, Eq. 6 becomes  

 

  
( ̅    )     

  
( ̅    )   [

  

   ( ̅    )  
    

   ]   (9) 

As mentioned in the previous section, diffusion in the flow direction ξ is very small 

compared to the spreading caused by the shear, and as a result, the diffusive term in ξ can be 

eliminated.  This reduces Eq. 9 to 

 

  
( ̅    )     

  
( ̅    )   

    

        (10) 



www.manaraa.com

7 

 

Eq. 10 cannot be solved using standard methods because U′ varies with y. However, Taylor 

argued that after a sufficient time, a balance between longitudinal advection and transverse 

dispersion is reached.  This reduces Eq. 10 to: 

   

  
 ̅   

    

   .        (11) 

 Integrating Eq. 11 twice gives 

  ( )  
 

 

  ̅

  
∫ ∫   (  )   

  

 

 

 
      ( )     (12) 

Given an expression for the concentration deviation, the mass transport,  ̇  is be defined to 

be 

1

0

2 2 1

0 0 0 0

' '

1
'( ) '( ) '( ) '(0)

B

yyB B

M U C dy

C
U y U y dy dy dy U y C dy

D x




 





   

   (13) 

The term ∫   ( )  ( )    
 

 
  because∫       

 

 
.  Because  ̇ is proportional to the 

longitudinal concentration gradient, it can be expressed in the form of Fick’s law: 

 ̇     
  ̅

  
         (14) 

where the dispersion coefficient, K, is  

   
 

  
∫   ( )
 

 
∫ ∫   (  )   

  

 

 

 
          (15) 

Averaging Eq. 10 and using Eq. 13-15 gives 

  ̅

  
    

   

  

̅̅ ̅̅ ̅̅ ̅̅ ̅
  

 

  
(    )̅̅ ̅̅ ̅̅ ̅   

 

  
(
 ̇

 
)  

 

  
( 

  ̅

  
)   (16) 

Writing Eq. 16 in terms of the fixed coordinate system, the 1-D ADE is finally derived: 

  ̅

  
  ̅

  ̅

  
  

   ̅

           (17) 
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For an initial spike injection, there are three consequences of Eq. 17: (1) the variance 

of the mean dye concentration will increase linearly with time, (2) the skewness will decay at 

a rate of x
-1/2

, and (3) the concentration distribution will eventually become Gaussian (Nordin 

and Troutman, 1980; Rutherford, 1994).  These conditions apply only after all assumptions 

from Taylor’s analysis are met—specifically, that sufficient time has passed to establish 

equilibrium between longitudinal advection and transverse diffusion; once this has occurred, 

the flow is considered to be in the ‘equilibrium zone’. The portion of the channel preceding 

this equilibrium zone is known as the advective zone. For stationary turbulent flow, the 

advective zone is defined as the distance it takes a tracer particle to sample the entire flow 

field. As predicted by Eq. 17, the skewness will decay until the profile is Gaussian; when this 

occurs, the tracer is considered to be in the ‘Gaussian zone’ (Rutherford, 1994).    

Solutions to the 1-D ADE 

 

The 1-D ADE (Eq. 17) is a partial differential equation (PDE) which can be analyzed 

through a variety of techniques, including a moment analysis, numerical analysis, or 

analytical techniques.  The method used depends on several factors including existing 

solutions available, resources allotted, and precision required. There are several analytical 

solutions to the 1-D ADE for a variety of initial and boundary conditions. The solution to Eq. 

17 for an instantaneous point source injected at t = 0 and at location x = 0 is  

 ̅(   )  
 

 √    
   [ 

(    ) 

   
]      (18) 

where M is the mass of the tracer and A is the cross-sectional area of the channel.  Eq. 18 

predicts the spatial concentration distribution for given time after injection.  In practice, it is 

very difficult to measure the spatial distribution of a tracer cloud; alternatively, the tracer 
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distribution is measured temporally at fixed locations downstream from injection.  Through 

the frozen cloud approximation, a method used to re-route spatial distributions, 

measurements in time can be transformed to estimate the spatial distribution of the tracer 

(Rutherford 1994).   

When an analytical solution is not available, the moments of the tracer distribution 

are useful in analyzing longitudinal dispersion.  The methods used to derive moments are 

mathematically less complex than deriving a full analytical solution or programming a 

numerical solution; as a result, the moments are typically computed before numerical or 

analytical solutions are derived. This makes the moments a valuable check in the verification 

of a new solution.  A drawback to the moment analysis is that concentration as a function of 

time or space cannot be derived.   

Moments are simpler to consider because they arise from integrals of the 

concentration in either space or time. The n
th

 moment of a spatial tracer distribution is 

defined as 

 ( ) ,n

nM t x C x t dx



         (19) 

A similar equation is used to compute the temporal moments. The moments describe 

different aspects of the tracer distribution as it advances downstream.  The zeroth moment, 

M0, is related to the mass M of the tracer distribution. The first and second moments, M1 and 

M2, characterize the location and spread of the distribution; the center of mass, μ, is defined 

as 

1

0

M

M
           (20)  

 and the variance, σ
2
, is defined as 
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2 22

0

M

M
            (21) 

The third moment, M3, characterizes the skew,, given by  

2 33

0

3

3
M

M
 




 


        (22) 

Numerical models are often used in addition to a moment analysis because they can 

predict a theoretical concentration distribution with respect to time or space. Additionally, 

coefficients and channel parameters are able to vary to reflect changing conditions. PDEs can 

be solved numerically with various finite-difference methods. These methods range in their 

mathematical complexity and accuracy.  With advances in computer technology, there is less 

of a disadvantage in using an advanced method; as a result, these methods are used over 

simpler, less precise methods.  Despite this, there are still disadvantages to using a numerical 

method.  Primarily, numerical models are not a solution to a PDE—only an approximation.  

All numerical solutions will have some degree of error.  Error is reduced by increasing the 

number of time steps in the numerical computation or choosing a more rigorous numerical 

method; however, these both increase the computational time and required memory to run the 

program. Regardless, some portion of the error will inherently be due to numerical dispersion 

(dispersion created by numerical calculation, not through mixing mechanisms).  

It is common that a new analytical model is developed when there is not a current 

model available to describe the conditions of interest and the user wishes to avoid the error 

characteristic of numerical models (De Smedt, 2006).   
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Estimating the Advective Length 

 

The solutions to Eq. 17 hold only after the tracer has left the advective zone, Lx. This 

distance must be calculated before applying Taylor’s analysis to ensure that Eq. 17 is not 

misused. If the channel is wider than it is deep, the distance it takes for tracer to mix across a 

channel is the length of the advective zone.  This distance, Lx, is predicted by 

      ̅  
 

  
         (23) 

where α
*
 is a coefficient, Lt is the transverse length scale, and εy is the transverse (or lateral) 

dispersion coefficient. Rutherford (1994) defines Lt as the distance from the point of 

maximum velocity to the farthest bank. Therefore, it is approximately half of the width for a 

symmetric, straight channel. Values for α
*
 have been estimated by several researchers based 

upon results from numerical and laboratory flume experiments (Fischer, 1967; Fischer, 1968; 

Sayre, 1968; Fischer 1973; Chatwin, 1972; Tsai and Holley, 1978), and for smooth channels 

it  ranges from 0.3 and 0.6 depending on the location of tracer injection.  In studies with 

channel and bed irregularities, α
*
 is larger. Denton (1990) conducted a study in rough beds 

and estimated α
*
=1.4.  The sets of experiments conducted by Valentine (1978) and Valentine 

and Wood (1979b) in dead zones estimated α
*
 to range from 1.6 to >10. 

Researchers have also attempted to quantify the distance to the Gaussian zone, LG. 

Based on experimental results reported by Fischer et al (1979), Denton (1990), Sayre (1968), 

Liu and Cheng (1980), LG has been estimated to fall within the range 

                     (24) 
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This distance is not of great importance because experimental concentration profiles 

measured in natural channels do not become completely Gaussian (Nordin and Sabol, 1974; 

Schmid, 2002).  

Estimating the Mean Velocity and Longitudinal Dispersion Coefficient 

 

Eq. 17 assumes that the mean velocity,   ̅ and dispersion coefficient K are constant. 

When analyzing the longitudinal dispersion, K in Eq. 17 is equal to the longitudinal 

dispersion coefficient, Kx.  The mean velocity, defined in Eq. 2, is typically obtained from 

field measurements across the channel cross-section at several points along the channels 

length. If extensive field data are not available, it can be estimated by 

 ̅  
 

 
          (25) 

where Q is the flow rate. Numerous field studies have been conducted to measure the 

dispersion coefficient, K, for various channels and rivers (Valentine, 1978; Fischer, 1968). 

However, in the case where measured results are not available for the channel or river of 

interest, empirical equations have been derived to calculate Kx.  Fischer (1967) modified Eq. 

15 into the semi-empirical form to calculate Kx for natural channels: 

    
 

 
∫  (  )  (  )
 

 
{∫

 

 (  )  (  )

  

 
(∫  (  )  (  )

  

 
   )   }     (26) 

where depth h(y) is the depth, written as a function of the transverse location, y, and εy is the 

dimensionless transverse mixing coefficient. Rutherford (1994) expressed the transverse 

mixing coefficient as 

                (27) 
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where u* is the shear velocity and θ is a dimensionless transverse mixing coefficient.  Holley 

and Jirka (1986) estimated θ to range from 0.2 and 2.0 based on their review of several flume 

and field experiments; larger values of θ are expected where there is more transverse mixing. 

Fischer (1973) used results from dispersion experiments and the relationship given in Eq. 27 

to reduce Eq. 26 to: 

     
 ̅   

  
         (28) 

where αx is dimensionless dispersion coefficient.  From Rutherford (1994), the range of αx is 

              .        (29) 

Eq. 26 can also be written as (Fischer, 1975): 

      
 ̅   

   
         (30) 

where cf is a dimensionless longitudinal dispersion coefficient. Fischer (1975) determined 

         based on experimental results.  Seo and Cheong (1998) compared the available 

theoretical and empirical equations for the dispersion coefficient and concluded that 

Fischer’s (1975) empirical equation predicts measured dispersion coefficients fairly well; 

however, for large river widths it will overestimate K appreciably.  In a later study Seo and 

Cheong (2001) investigated several methods for determining the model parameters for the 

dead zone model and found that predictions from the model with parameters estimated with 

the moment matching method resulted in the best fit to measured field data.   

There is some degree of uncertainty associated with any value of   ̅ and K, whether it 

is directly measured or empirically calculated. A more precise estimate can be obtained from 

field testing, but the traditional tracer experiment is costly and time-consuming.  Carr and 

Rehmann (2007) introduced an alternative method that uses acoustic Doppler current 
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profilers (ADCP) to estimate K.  This method uses ADCP transects measured and made 

available by the USGS. Estimated values of K from the ADCP method have been compared 

to values obtained through tracer studies, and the ADCP method can predict K as well, but in 

most cases, better than empirical formulas.   

Alternative Models 

The 1-D ADE is the conventional model used to describe longitudinal dispersion in a 

channel; however, there are several cases where this equation is not appropriate.  As a result, 

alternative longitudinal dispersion models have been created.  Examples of where alternative 

models are preferred over the 1-D ADE include (1) cases where resources are not available, 

(2) channels with dead zones, and (3) flow in the advective zone. These alternative models 

vary in their complexity, accuracy, necessary input data, and application. The best model will 

depend on the location of interest, conditions in the channel, and the resources available. 

Empirical Models 

 

Empirical equations are useful to those who need to calculate transport processes in 

natural channels but do not have the data, time or computational power to use numerical or 

analytical solutions.  This is the case for when calculations must be done immediately (e.g., 

in response to a contaminant spill) or the user is dealing with a very large dataset and a 

simplified method is preferred.  Day and Wood (1976) formulated an empirical equation to 

predict the peak concentration, Cp, based upon the geometry of a typical response curve: 

0 /p s cC C V T IQ         (31) 
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where C0 is the initial concentration of the solute, Vs is the volume of the solute, Tc is a 

scaling parameter that describes the spread of a tracer distribution, I is the area under the 

dimensionless time-concentration curve (approximately 1.12), and Q is the flow rate.  Tc can 

be estimated by the following empirical equation: 

/ 0.24 0.24 /cT U B x B         (32) 

where x is the longitudinal distance. Eq. 31 and 32 were derived from a regression analysis of 

results recorded by Day (1975) for 702 concentration curves measured in five reaches of 

small mountainous streams in New Zealand.  The best application of these equations would 

be for reaches similar to the ones described in Day (1975). 

 Jobson (1997) also formulated empirical equations to predict the evolution of a tracer 

cloud as it moves downstream.  While Day and Wood (1976) developed a dimensionless 

curve to represent their dataset, Jobson (1997) modeled the tracer response curve as a scalene 

triangle. The peak concentration and the times of arrival of the peak, leading edge, and 

trailing are computed with empirical relationships established from time-of-travel studies for 

nearly one hundred different rivers and streams. The appeal of using Jobson’s method is that 

it requires minimal input and the input that is required is typically available through the 

United States Geological Society (USGS). Additionally, it is based upon an extensive sample 

size so it is not limited to particular types of rivers or channels.   

The Dead-Zone Model 

 

The 1-D ADE predicts that the tracer response curve will eventually become 

Gaussian at large distances downstream.  This behavior is not observed in the results from 

tracer studies in natural channels (Nordin and Sabol, 1974; Day, 1975).  Tracer profiles from 



www.manaraa.com

16 

 

field tests maintain a degree of asymmetry, even for large distances downstream.  Models 

that use dead zones as a mechanism to account for the persistent skew seen in tracer response 

curves are termed dead zone or transient storage models.  The linear growth of the variance 

in the main channel is maintained in the dead zone model, but it includes additional terms to 

account for persisting skew of the tracer distribution; however, as in Taylor’s analysis, the 

skew eventually goes to zero. These additional terms describe the movement of tracer in and 

out of the dead zone.  Assuming that the tracer is well mixed across the channel and within 

the dead zones, the transport equations and boundary conditions for the dead zone model are 

given by (Hays et al., 1966; Davis et al., 2000; Schmid, 2002; De Smedt, 2006): 

   

  
  

    

     
   

  
   (     )     (33) 

  
   

  
   (     )       (34) 

where Cm is the concentration in the main channel, Cd is the concentration in the dead zone, 

βd is a parameter used to describe the ratio of the area of the dead zone to the area of  the 

main channel, and αd is the mass exchange coefficient between the main channel and storage 

zone. For an instantaneous slug release, the initial conditions are 

  (     )  
  

 
 ( )       (35) 

  (   )            (36) 

where  ( ) is the Dirac delta function, and the boundary conditions are that the 

concentration is zero far from the release point (i.e.,   (   )   ), and that for a 

conservative tracer the mass passing a point must be equal to the initial mass:  

  ∫   (   )     
 

 
.       (37) 
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Valentine and Wood (1977) solved for the spatial moments of the dead zone model 

and studied their behavior with respect to time.  From this spatial moment analysis, they 

came to two major conclusions regarding the effect of dead zones in channels: (1) dead zones 

increase the magnitude of the longitudinal dispersion; and (2) dead zones increase the 

advective length.   

Bencala and Walters (1983) numerically solved Eq. 33 and 34 and fit their solution to 

field tracer measurements.  Others have expanded upon this numerical solution, including 

Runkel and Chapra (1993); their numerical solution was used to create the One-dimensional 

Transport with Inflow and Storage (OTIS; http://co.water.usgs.gov/otis) model.  

The analytical solution to the dead zone system of equations was obtained using 

Laplace transforms by Davis et al. (2000) and De Smedt et al. (2005).  Because it is simpler 

and requires fewer steps, De Smedt’s (2005) derivation is provided. The Laplace transform 

 ̃( ) of a function f(t) is defined as 

  (̅ )   { ( )}  ∫  ( )      
 

 
      (38) 

where s is the transform variable. The Laplace transform is applied to Eq. 33 and 34 so that 

 
   ̅ 

     
  ̅ 

  
 (     

  

      
)  ̅  (

 

 
)  ( )   (39) 

  ̅  
   ̅ 

      
         (40) 

When αd or βd are zero, Eq. 43 and 44 reduce to the transformed expression of the 1-D ADE. 

Recall that the analytical solution to 1-D ADE was given by Eq.18. The transformed 

concentration can be written in terms of Eq.18: 

  ̅(   )    ̅ (       
  

 

      
)      (41) 

http://co.water.usgs.gov/otis
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The convolution theorem of the Laplace transform presented by Sneddon (1972, p. 228) was 

used to find the solution to Eq. 45.  In order to apply this theorem, Eq. 41 is re-written as a 

function of three variables: x, s1 and s2:  

  ̅(       )    ̅ (        
  

 

       
)     (42) 

The inverse Laplace transform of Eq. 46 is determined with respect to s1 and then again with 

respect to s2.  After it is inverted with respect to s1, Eq. 42 becomes 

     

2
1

1 2

1 2 0 1, , ,

d

d d d

t

t s

mL C x t t C x t e e



   
      (43) 

Taking the inverse Laplace transform with respect to s2 gives 

    
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
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       (44) 

Next, the convolution theorem is applied. The final solution is written as 

 
   

 1 1
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
  
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    

 

     
    

    
    (45) 

De Smedt et al. (2005) compared their analytical solution with the OTIS-model 

solution and found it to agree; any discrepancies between the analytical solution and the 

numerical solution were due to numerical error generated in OTIS (De Smedt et al., 2005). 

The analytical solution from Davis et al. (2000) was compared to experimental data in a 

laboratory flume. Measurements were taken at various lengths, two within the advective 

zone.  The predicted peak concentrations for the two locations in the dead zone exceeded the 

measured values by two orders of magnitude; the model predicted within an order of 

magnitude for locations after the advective length (Refer to Fig. 8 in Davis et al., 2000).  
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These results indicate that the analytical solution to the dead zone model is appropriate for 

distances outside of the advective zone but it is not appropriate within the advective zone. 

Advective Zone Models 

 

The 1-D ADE does not apply in the advective zone because the tracer has not had 

sufficient time to reach equilibrium between longitudinal advection and transverse 

dispersion. An alternative model is necessary, especially for wide rivers where the length of 

the advective zone is large because of the time required for the tracer to fully mix across the 

width. A solution to mixing in the advective zone can be described by the unsteady two-

dimensional depth-averaged transport equation given by 

  

  
  

  

  
  

  

  
   

   

      
   

         (46) 

where U and V are the depth-averaged longitudinal and transverse velocity components and 

Dx and Dy are the mixing coefficients in the x and y directions.  Mixing with respect to depth 

is not considered because mixing over the depth occurs much faster than mixing over the 

width for wide rivers for channels with greater widths than depths. Two-dimensional mixing 

models for straight channels have numerically solved Eq. 46 for steady (Akhtar, 1978; 

McCorquodale et al., 1983) and unsteady pollutant input (Verboom, 1974; Holly, 1975; 

Ohishi, 1981). These models are limited in their use because they describe mixing processes 

in straight, uniform channels.  

For non-uniform, meandering channels Eq. 46 can be replaced with a streamtube 

model.  Instead of using the traditional Cartesian coordinates, the streamtube model uses αc 

and βc, the longitudinal and transverse curvilinear coordinates.  The advection/dispersion 

equation in curvilinear coordinates derived by Chang (1971) is 
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where    and     are depth-averaged longitudinal and transverse velocities,    and    are the 

longitudinal and transverse dispersion coefficients, and    and    are metric coefficients 

that describe the non-uniformity of the channel in the longitudinal and transverse direction. It 

is assumed that    is zero. When    and    are equal to 1, the channel straight and has zero 

roughness. The streamtube model transforms Eq. 47 with the variable q, the cumulative 

discharge: 

 (     )  ∫   
  

  
              (48) 

Writing Eq. 51 in terms of q and integrating with respect to β gives 
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)  (49)  

As we assumed in Taylor’s analysis, the longitudinal diffusion term is very small and can be 

eliminated.  This reduces Eq. 49 to 

  

  
 

  

  

  

   
 

  

  

 

  
(   

     
  

  
)      (50) 

This equation assumes that tracer input is not steady. If the pollutant input is constant, the 

first term is eliminated. Two-dimensional streamtube models have been numerically solved 

for the case of steady-state pollutant input (Yotsukura and Sayre, 1976; Lau and 

Krishnappan, 1981; Somlyoda, 1982 and Gowda, 1984) and unsteady input (Holly, 1975; 

Harden and Shen, 1979; and Luk et al., 1990).   

Luk et al. (1990) verified their numerical model with laboratory measurements within 

the advective zone.  For a slug injection, their predicted results for the peak concentration 

were within 5% of the measured results.  Although the predicted peak results are in fairly 
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good agreement with the measured results, Luk et al. did not quantify errors associated with 

other aspects of the concentration curve, such as the arrival time, variance, and skew.  

Additionally, the numerical model requires several input parameters including depth 

measurements across numerous cross sections, velocity and/or discharge measurements, and 

a measurement of the transverse dispersion coefficient.  Obtaining representative values for 

these parameters is difficult and costly.   

A two-parameter one-dimensional model for mixing in the advective zone was 

developed and evaluated by Reichert and Wanner (1991). This model is termed the 

‘enhanced one-dimensional model’ and is based on a simplified velocity profile consisting of 

a flowing zone and a stagnant zone with zero velocity (Fig. 2.1). Because the stagnant zone 

occupies a fraction  of the width, the velocity in the flowing zone is  ̅ (   ). In other 

dispersion models, such as Taylor’s and Jobson’s, the velocity is set as the average velocity, 

 ̅  for every lateral distance across the stream profile.  An illustration of the two assumptions 

is given in Fig. 2.1; Reichert and Wanner’s assumption is a much better fit to the measured 

data. The model of Reichert and Wanner (1991) includes advection in the flowing zone and 

transfer between the two zones at a rate qe. The transport equations of the enhanced one- 

dimensional model for the concentration C1 in the flowing zone and C2 in the stagnant zone 

are 

 

  
[(   )   ]  

 

  
(   )     (     )    (51) 

 

  
(    )    (     )       (52) 
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Figure 2.1: Description of channel cross section and velocity profile of Reichert and Wanner model: (a) Portion 

of the channel defined by as the flowing zone and the stagnant zone. (b) Velocity, U, with respect to transverse 

location y for measured data (-●-), average velocity,  ̅, (dotted line), and  ̅/ (1-α). Measurements were taken at 

Walnut Creek, Ames, IA.  
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The transport equations given by this model are similar to the transport equations given by 

Eq. 33 and 34; the main difference is that the dispersion term is eliminated. Once the 

concentrations in each zone are computed, the cross-sectional average concentration C is 

1 2(1 )C C C   
        (53)  

Reichert and Wanner (1991) provided guidance for estimating the parameters  and qe. They 

showed that with the velocity profile in Fig. 2.1 when applied to Eq. 15 gives 

   
  

  

   ̅ 

  
,         (54) 

and they also used the asymptotic behavior of the model to show that 

   
   ̅ 

   
.         (55) 

Equating Eq. 54 and 55 yields 

12e y

h
q

B


         (56) 

and with Eq. 27, qe can be written in terms of the shear velocity, u* so that: 

2*
12e

u h
q

B
         (57) 

For estimating , Reichert and Wanner (1991) noted that an analysis of field data gave a 

range of 0.07 <  < 0.17 (Nordin and Sabol, 1974); they also used Eq. 54 and Fischer’s 

(1975) formula for the dispersion coefficient (Eq.30) to obtain an approximate formula for .  

2

12
fc




          (58) 

In the advective zone, transverse mixing is an important process for controlling the 

transport of material because the concentration is not yet well mixed across the channel.  
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Reichert and Wanner (1991) model transverse mixing through the exchange between two 

zones; however, transverse mixing is not accounted for within the individual zones.  This 

simplification can be problematic if the initial input is in the form of a spike or narrow pulse 

because the model underestimates the lateral exchange in the center of the channel 

immediately downstream of the initial input (Reichert and Wanner, 1991).  In this case, the 

initial pulse is retained in the flowing zone instead of being dispersed across the channel.  

Reichert and Wanner (1991) used cosine-squared to describe the shape of the initial pulse. 

The width of the initial pulse,     is described Reichert and Wanner as the width at half-

maximum and with the equation: 

2

p

y

UB
x  


          (59) 

where γp is a dimensionless coefficient. For the condition 1/ 8p  , the spike will not appear 

in the results because it is sufficiently large for the pulse to disperse across the channel and 

not stay in the flowing zone. Reichert and Wanner verified this conclusion by plotting the 

solution of their model with respect to dimensionless distance defined by: 

 
2

'
y

x x
UB


          (60) 

When 1/ 8p  , a spike will be present in the results for C vs. x′, however it will be 

significantly smaller at x′=0.2 and disappears completely by x′ = 0.4 (Reichert and Wanner, 

1991). In addition to understanding the behavior of the initial pulse, Reichert and Wanner 

compared their solution to measured data recorded by Nordin and Sabol (1974).  They found 

that the solution was in good agreement with the measured results after x′ = 0.8; before this 

distance the model under predicted the peak concentration and over predicted the variance.  



www.manaraa.com

25 

 

 Although Reichert and Wanner (1991) presented the concentration curves produced 

with their model in their results, they did not show how the solution was derived.  Their 

solution has the potential of being extremely useful to water resource engineers and scientists 

because the advective length can be quite large in natural channels.  Additionally, Reichert 

and Wanner showed that their model was able to predict the concentration for most of the 

advective length without adding several additional terms to account for lateral mixing.  In 

fact, the Reichert and Wanner model only requires one additional term than Taylor’s 

dispersion model.   

Summary 

For most cases, describing longitudinal dispersion with Taylor’s analysis is a good 

first approximation.  Several researchers have taken Taylor’s analysis and expanded upon the 

1-D advection-dispersion equation (Eq. 17) by deriving a solution to the equation, modifying 

the original equation to include additional parameters to account for channel features and/or 

irregularities, or creating empirical equations to estimate the coefficients of the equation.  

These developments have greatly improved the ability for researchers to model longitudinal 

dispersion for a variety of channels; furthermore, users have the ability to choose the solution 

that best fits their needs based on the resources available and the precision needed.   

There are some cases where it is not possible to use Taylor’s analysis or using 

Taylor’s analysis results in greater error than desired.  In these cases, alternative models are 

pursued.  Taylor’s analysis cannot be used in cases where there are insufficient resources to 

reasonably predict dispersion coefficients, such as remote locations; instead, empirical 

models are used because they require very little input to estimate contaminant transport.  
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Empirical models are helpful when resources are sparse, but they simplify the physical 

processes describing dispersion and these simplifications may lead to large errors. Alternative 

theoretical transport equations have been developed for the several models including the dead 

zone model, the streamtube model and Reichert and Wanner’s.  The transport equations for 

these models are closely related to Taylor’s transport equations; however, additional terms 

are added to account for processes not included in Taylor’s model.  These additional terms 

can be used to describe the transport in and out of dead zones or describe on-going lateral 

exchange within the advective zone.  When applied to field data, these models often predict 

contaminant transport better than Taylor’s model; however, they are criticized because it is 

difficult to define their additional terms.  This is especially true for 2D advective zone 

models.  A water quality modeler has the option of using Taylor’s model that may result in 

large errors, or they can use the streamtube model that requires six parameters per streamtube 

to be identified in general. Reichert and Wanner’s model is an attractive alternative to the 

streamtube model because it only requires one additional parameter to identify and the 

parameters can be related to Taylor’s dispersion parameter, K; however, the user must solve 

the set of PDEs given by the transport equations.   

An enhanced understanding of the processes controlling longitudinal dispersion in 

addition to the development of solutions to explain these processes with the resources 

allotted will result in improved estimation of contaminant transport.    
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CHAPTER 3: METHODS 

Introduction 

 The one-dimensional dispersion model presented by Reichert and Wanner (1991) has 

far fewer parameters to define than two-dimensional models applicable within the advective 

zone, and compared to other one-dimensional models, it has just one more coefficient than 

the Taylor model and one fewer than the dead zone model. The Reichert and Wanner model 

is simple, and it can be extremely useful to water quality engineers and scientists if a 

published solution to the transport equations were available.  Reichert and Wanner (1991) 

present concentration curves predicted with their model, but do not explain how the curves 

were generated.  This chapter outlines how an analytical solution to the Reichert and Wanner 

model was developed, verified, and applied.   

Model Development 

  Contaminant transport in the advective zone depends on velocity differences and 

transverse mixing. In the streamtube model, the channel is divided into sections based upon 

the mean velocity. The Reichert and Wanner model (1991) is similar, but it uses only two 

sections: a flowing zone and a stagnant zone.  Although Reichert and Wanner’s model does 

not apply to the entire advective zone (refer to Chapter 2), it requires much less user input 

than the streamtube model.  The transport equations for this model form the basis for the 

development of the analytical advective zone model.   

The cross-sectional area in the advective zone is assumed to remain approximately 

constant, so Eq. 51 and 52 can be re-written as 
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where β is defined as 

eq

A
           (63) 

The initial conditions assume an instantaneous Gaussian pulse injection with spread of width 

0  into the flowing zone at time t = 0 and at location x = 0.  This condition can be described 

by 
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         (64) 

Additionally, the concentration in the stagnant zone is taken to be zero initially: 

2( ,0) 0C x           (65) 

The solution to Eq. 61 and 62 is obtained using Laplace transforms.  The Laplace transform 

of the concentration in the j
th

 zone is  

0
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Applying Eq. 66 transforms Eq. 61 and 62 into 
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because the Laplace transform of the derivative is 
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Using Eq. 68 to eliminate 2

~
C  from Eq. 67 gives 
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   

 
       

   
 (70) 

If β = 0, Eq. 70 has the solution 

2

2
0

1

1

1 0 ( , )

Ut
x

C C e N x t


                 (71) 

The Laplace transform of the solution, N(x, t), is written as  ̃(   ). When    , the Laplace 

transform for the concentration in the flowing zone can be written as 

1( , ) ( , ')C x s N x s         (72) 

where  

' 1
1

s s
s

 

  

 
   

  
       (73) 

Eq. 72 is inverted using an iterative convolution theorem from Sneddon (1972, p. 228): 

  1 2 2 1

0

( , ) ; ( , );

t

L f t d t s L L f t t t s t s  
 

     
 
    (74) 

De Smedt et al. (2005) used Eq. 74 to invert an expression similar to Eq. 72 in their 

derivation of an analytical solution of the dead zone model.  Following De Smedt et al. 

(2005), Eq. 71 is written as a function of three variables: x, s1, and s2, so that 

2

1 1 2 1

2

( , , ) ,
1 ( )(1 )

C x s s N x s
s

 

   

  
    

    
    (75) 

The inverse Laplace transform of Eq. 75 is derived iteratively, first with respect to s1: 
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  

2
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2 11
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    
             (76) 

This solution was obtained after applying the identity 

   ( )atL e f t f s a         (77) 

Next, Eq. 76 is inverted with respect to s2: 
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 
 

    (78) 

The final term of Eq. 78 is solved with the transform relation given by 

 1 /

1/ 2 ( )sL e tI t t               (79) 

where λ is 

 

2
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1
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 
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
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The expression for C1 can be written as 
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      

    (81) 

Eq. 81 is in a form appropriate to apply the convolution theorem. The solution for C1(x,t) is 
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   (82) 

Substituting Eq. 71 into Eq. 82 and using the properties of the Dirac delta function yields 
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   (83) 

The solution to C1 contains two main components—the first term contains the initial 

Gaussian pulse and the second term contains an indefinite integral. Recall that the average 

concentration in the channel, C, defined by Eq. 53, is a function of C1 and C2. Therefore, an 

expression for C2 must be derived as well.  Given the result in Eq. 72, Eq. 68 can be re-

written as 

   2 1 , , 'C C x s N x s
s s

 

   
 

 
     (84) 

This expression can be written as the product of two functions, g(s) and f(s), defined by 

( )g s
s



 



         (85) 

and 

( ) , 1
1

f s N x s
s
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  
    

   
      (86) 

The inverse Laplace transforms, g(t) and f(t), of g(s) and f(s) are 
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The inverse transform of a product is solved with the convolution theorem: 
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( ) ( ) ( ) ( )

t
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After Eq. 89 is applied, C2(x, t) can be written as 
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  (90) 

The solution to C2, like C1, contains two main components: the first term contains a single 

integral and the second term with a double indefinite integral. This solution can be simplified 

given the definition for the time of advection, ta  
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x
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
          (91) 

When Eq. 91 is substituted into Eq. 90; it becomes 
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Given the solution from Eq. 82 and Eq. 92 the total concentration in the channel, C, is  
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 (93) 

The solution for C contains four main components—two from C1 and two from C2.  Three 

terms contain a convolution integral which require numerical integration to solve. With 

numerical integration, the smaller the integrating unit is, the more precise the solution will 

be; however, it will take longer to compute the solution.  Values of C, C1 and C2 were 

computed using MATLAB (R2012a, Mathworks, 2012).  To compute a time series of 

concentration, the functions in Appendix A requires the user to specify the number of time 

steps. Similarly, to compute the integrals over , the user must specify the number of points 

at which the integrand is computed. The solution given by C is checked by methods 

described in the next section. 

Model Verification 

To verify the analytical solution, the moments of Eq. 93 are compared to the spatial 

and temporal moments of the Reichert and Wanner model.  
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Spatial Moment Analysis 

The zeroth, first, second, and third spatial moments of the concentration distribution 

predicted by the Reichert and Wanner model were derived for the flowing zone and the 

stagnant zone in order to obtain analytical expressions for the mass M, spatial center of mass 

μx, spatial variance σx
2
, and spatial skew x . The analytical solutions for M, μx, σx

2
, and x 

were compared to the values acquired by integrating the spatial concentration curves 

calculated by Eq. 93.  The general expression for the n
th

 spatial moment for each zone is 

given as (a modification of Eq. 19):  

1
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nxF x C dx
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
          (94) 

2

n

nxS x C dx



          (95) 

where Fnx is the n
th

 spatial moment in the flowing zone and Snx is the n
th

 spatial moment in 

the stagnant zone.  To derive equations for the evolution of the spatial moments, Eq. 61 and 

62 are multiplied by x
n
 and integrated over all x. The advection term in Eq.61 must be 

integrated by parts: 
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1 1 1 1

n n n

nxU x C dx U x C nx C dx nUF
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


 
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          (96)

 

Then, the transport equations for the n
th

 moments are 

1(1 ) ( )nx
nx nx nx

dF
F S nUF

dt
            (97) 

( ) 0nx
nx nx

dS
F S

dt
           (98) 
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Eq. 97 and 98 are used to set a system of ordinary differential equations (ODEs) for the first 

four spatial moments.  For an instantaneous injection of Gaussian pulse in the flowing zone 

at x = 0 (Eq. 64), the initial conditions are  

2

0 0 0
0 2

0 1 1 2 3 3
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1 1
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 

          (99)
 

where M0 is the initial mass of the tracer and σ0
2
 is the initial spatial variance of the tracer 

pulse. The solution for the first four spatial moments in each zone—F0x, S0x, F1x, S1x, F2x, S2x, 

F3x, S3x—was obtained by solving the linear system of ODEs defined by Eq. 97 and 98 given 

their corresponding initial conditions (Eq. 99).  The composite solution for the n
th

 moment is 

defined as: 

(1 )nx nx nxM F S           (100) 

The composite moments were used to form analytical expressions for M, μx, σx
2
, andx: 
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The solutions to Eq. 101-104 were generated in MATLAB with Function 3 (Appendix A).  

To verify that the expressions generated by Maple are correct, the solutions from Eq. 101-

104 were checked with a numerical solution. Using the set of ODEs and initial conditions 

defined in the spatial moment analysis, the numerical solution was computed using the 

MATLAB function ode45.  This function evaluates non-stiff ODEs through the use of the 

fourth-order Runge-Kutta method with a variable time step (R2011b Documentation, 
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mathworks.com). The functions used for the numerical analysis are Function 4 and Function 

5 (Appendix A).   

Temporal Moment Analysis 

   

 The temporal moments of the Reichert and Wanner model function as a secondary 

verification to the analytical solution given by Eq. 93.  The analytical solutions for the 

temporal moments also are used to determine model parameters, as discussed in Chapter 4. 

Unlike the spatial moments, the analytical expressions for the temporal moments were not 

generated by solving a set of ODEs with specified boundary conditions; instead, the 

analytical expressions were derived using Laplace transforms.  Applying the initial and 

boundary conditions with this approach was simpler than with computing evolution 

equations for the moments. 

  Nordin and Troutman (1980) used a relation between the Laplace transform and the 

moments to compute temporal moments; this relationship was used to derive the expressions 

for the first four temporal moments in each zone—F0t, S0t, F1t, S1t, F2t, S2t, F3t, S3t; the 

derivation of these expressions is provided in Appendix B.  After the four temporal moments 

are derived, the method used to derive the composite moments, Mnt, as well as expressions 

for μt, σt
2
, andt  is the same as the one used in the spatial moment analysis.  The expressions 

for M0t, μt, σt
2
, andγtcan be simplified by assuming that x/σ0 is at least greater than 2. The 

full expression for M0t, and the simplified expressions for M0t, μt, σt
2
, andγt  are 

   0 0 0 0
0
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The solutions to Eq. 105-108 were computed with Function 6 (Appendix A).  The numerator 

of the skewness coefficient is used in this analysis instead of the skew to simplify 

calculations; it is referred to as gt. Eq. 105-108 are similar to Eq. 101-104 in several ways, 

especially for large distances or large times.  The mass, M, and the zeroth temporal moment, 

M0t, are both constants for all time (the units are different, however), and the spatial and 

temporal center of mass, μx and μt, grow linearly as a function of the mean velocity, U.  

Although it is not as clear, both variances, σx
2
 and σt

2
, grow linearly after sufficient time and 

distance.  Finally, the skewness coefficients, γx and γt, both approach zero at large distances 

and times.   

Model Application 

The performance of the analytical solution is evaluated by comparing the theoretical 

predictions with experimental tracer results measured in the advective zone.  Day (1975) 

conducted a set of tracer experiments in five braided mountainous stream reaches in New 

Zealand.  These streams have similar geomorphological characteristics: steep slopes 

(>0.015), rough beds (mean sediment size ~10 cm), and low sinuosity (Day, 1975).   From 
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the 49 experiments, 702 time concentration curves were recorded.  For this analysis, only the 

16 tracer response curves recorded in the Thomas reach on 30 Aug. 1972 are used. These 

sixteen concentration curves, published in Figure 12 of Day and Wood (1976), were digitized 

in MATLAB. The first four temporal moments, M0t, M1t, M2t and M3t, of the digitized curve 

were computed to obtain values for the measured temporal center of mass μtm, the measured 

temporal variance σtm
2
, and measured numerator to the temporal skewness coefficient, gtm, for 

each curve.  

The hydraulic characteristics of Thomas Reach are given in Table 3.1. This dataset is 

useful for evaluating the analytical solution in Eq. 93 because several measurements (if not 

all, depending on how the Lx is computed) were recorded within the advective length; data 

sets from other field studies (Jobson, 1997; Nordin and Sabol, 1974; Davis et al., 2000) 

typically have very few reported measuring locations before the advective length because 

Taylor’s model and the dead zone model do not apply in this region. Additionally, this 

dataset has been used or referenced in several mixing studies based upon the behavior 

observed (Bencala and Walters, 1983; Hunt, 1999; Kadlec, 1994). 

A 4 L salt solution slug of specified concentration was injected into the thalweg of the 

Thomas Reach (approximately the center).  The concentration was measured at 50, 62.5, 75, 

87.5, 100, 125, 175, 200, 225, 250, 275, 300, 350, 400, 450, and 500 m downstream from the 

initial injection.  Concentrations were measured in the center of the channel with a 

conductivity probe.  The initial concentration of the salt slug is not reported in Day (1975); 

however, Day and Wood (1976) report that integration of the concentration curves accounts 

for the total mass injected. 
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Table 3.1: Channel and Hydraulic Data for Thomas Reach on 30.Aug.1972* 

Slope  

(m/m) 0.0273 

Mean Sediment Size** 

(cm) 5.6 

Discharge  

(m
3
/s) 0.37 

Mean Velocity  

(m/s) 0.54 

Mean Flow Width  

(m) 3.8 

Lx (α*=0.4-1.4)***  

(m) 161-563 
 

*Data taken from Table 1 and Table 2 from Day (1975) 

**Surface sample by line grid oriented along the channel (Day 1975) 

***Range based on values of α
*
 recommended by Fischer (1966), Chatwin (1972), and Denton (1990) 

 

Two estimates of the advective length, Lx, of Thomas Reach were calculated by Day 

(1975) using a form of Eq. 23.  The two lengths—161 m and 403 m—were calculated using 

recommended values of α
*
 = 0.4 from Fischer (1966) and α

* 
= 1 from Chatwin (1972).  At 

the time when Day published this paper, Chatwin’s estimate of α
*
 was the most conservative; 

however, since then, more research has been done in natural channels and channels with dead 

zones.  Recall from Chapter 2 these studies predict much greater α
*
. When Denton’s value of 

α
* 
= 1.4 is used, Lx for Thomas Reach is 563 m. 

Day (1976) investigated the precision and probable uncertainty associated with the 

measurements from the tracer study.  The errors for measurements in the Thomas Reach on 

30.8.1972 are 13.1% for tracer integral; 4.0% for mean velocity, and 12.4% for discharge. 

The error in the tracer integral can be related to the error in concentration measurements. 
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Estimating Model Parameters 

   

There are several methods ranging from theoretical to empirical used to estimate 

mixing parameters. The moment matching method is applied to this model through two 

different approaches to estimate U , α, and β.  The first approach assumes U , α, and β 

remain constant throughout the entire reach.  Single values of U , α, and β are extracted from 

relationships given by the measured temporal moments and Eq. 105-108.  The second 

approach optimizes the values for the three coefficients so that the values are specific to each 

sub-reach.  In the optimized method, the individual temporal moments for the particular 

reach are used to approximate values for U , α, and β.   

The analytical solution assumes that the initial injection of tracer is in the form of an 

instantaneous Gaussian pulse. Reichert and Wanner’s model is sensitive to the relative width 

of the initial pulse (see Chapter 2), but it was found that for values of σ0 > 7.5 m, the solution 

does not contain a large spike.  This is the only value that was not estimated from the 

measured results.   

The 16 values for μtm, σtm
2
, and gtm were plotted as a function of x; a first-order line 

was fit for each parameter set, and the slopes of the lines were used to approximate the 

constant coefficient values forU , α and β.  The relationships are given as 

1U b           (109) 

3

2

2

3
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b
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where b1 is the slope of the best-fit line through μtm, b2 is the slope of the best-fit line through 

σtm
2
 and b3 is the best-fit line through gt.  

For the optimized method, a line was fit to each value of μtm, σtm
2
, and gt through the 

origin to obtain 16 individual values of b1, b2 and b3.  These values are used to compute 

individual values of U , α, and β defined as iU , αi, and βi .  Given the optimized values of the 

mean velocity iU , stagnant zone fraction αi, and the assumed value of 0, the initial 

concentration, C0 for each location is calculated with 
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
        (112) 

The approximation for C0 is used for both methods. The predicted concentration curves from 

Taylor’s analysis are plotted with respect to the measured data and the predicted data from 

Eq. 93 so that predictions from both methods can be compared to Day’s measured data.  

Recall that the analytical solution for Taylor’s analysis is given by Eq. 18. Values for the four 

coefficients, M, A, K, and U are equal to or derived from values of U , α, β and C0 

approximated in the previous analysis, or the parameter values were reported by Day (1975).   

The mass, M, is predicted by 

0 0M C           (113) 

and the dispersion coefficient, K, is predicted with the expression given by Eq. 55 after 

substituting in Eq. 63 which gives 

2

2U
K




          (114) 
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As with the previous analysis, both constant coefficients and optimized values for the values 

of M, A, K, and U are computed. 
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CHAPTER 4: RESULTS AND DISCUSSION 

Introduction 

The predicted concentrations from Eq. 93, as well as Eq. 83 and Eq. 90, are assessed 

to understand the range of applicability of the solution and the response of the solution to 

changes in model parameters.  The behavior of the temporal and spatial moments predicted 

by the integration of Eq. 93 is analyzed to verify that it is a solution to the Reichert and 

Wanner model. Additionally, the behavior of the moments provides insight into the physics 

of the model.  Finally, the solution is applied to field data recorded by Day (1975).  The 

parameters are approximated through a moment matching method where the analytical 

solutions for the temporal moments are matched with the measured temporal moments.  With 

the parametersU , α, β, and C0 predicted from the moment matching method, the predicted 

concentration curves are plotted with respect to the measured concentration curves.  

Additionally, the predicted and measured curves are compared with predicted results from 

Taylor’s analysis. For each analytical solution a constant coefficient case and optimized case 

is analyzed.  The results from this analysis are used to assess the value of the analytical 

solution to the Reichert and Wanner model.  

Effect of the Initial Pulse 

As described in Chapter 2, Reichert and Wanner (1991) used a cosine-squared initial 

concentration pulse and specified the width of their pulse to be Δx, which is the width at half-

maximum. In the present analysis, the pulse is described as a Gaussian plume with spread σ0, 

defined by 
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0

U
 


          (115) 

where ψ is a dimensionless coefficient used to describe the relative width of the pulse and is 

proportional—but not equal to—
p .  

To understand the behavior of the response curves the results were normalized with 

respect to concentration, time and space. The dimensionless concentration, '*C , time, t′, and 

space, x′ are defined by 

'*

12
C C

MQ


         (116) 

'
12

t t


          (117) 

'
12

x x
U


          (118) 

The purpose of the asterisks in 
'*C is to distinguish the normalized concentration from the 

deviation in concentration,
'C .  At the advective length, Lx, x′ is approximately equal to 

*

'
4

x


          (119) 

given the relationship established in Eq. 23 and assuming an initial injection in the center of 

the channel.  The values in Eq.116-118 correspond to the dimensionless parameters used by 

Reichert and Wanner (1991).   

The dimensionless cross-sectional average concentration,
'*C , the concentration in the 

main channel, '*

1C , and the concentration in the stagnant zone, '*

2C , are plotted with respect to 

t′ and x′ (Fig. 4.1).The behavior of the solid (ψ= 1.5) lines in Fig. 4.1 describes the movement 

and exchange of tracer as it moves with respect to time and space.  The advective zone is 
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characterized by skew observed in the form of tails in the spatial and temporal concentration 

curves (Reichert and Wanner, 1991). Dispersion controls the degree of skew; if the tracer 

cloud did not disperse, it would advect downstream as a Gaussian pulse.  Dispersion 

separates tracer particles from the centroid; the delayed parcels arrive at later time, or they 

are located farther upstream. Therefore, the skew is positive for the temporal curves (Figs. 

4.1a-c) and negative for the spatial curves (Figs. 4.1d-f).  The magnitude of skew decreases 

as the tracer moves downstream—that is, for larger x′ and t′.   

For narrower initial pulses the predicted values of '*C and '*

1C show a noticeable spike 

(dashed lines (ψ= 0.2) in Fig. 4.1).  An empirical analysis showed that for values of ψ ≥ 1.5 

the model is able to compute the concentration without producing the spike.  In the case 

where ψ < 1.5 the spike is likely to be produced by the model; the solution appears 

unrealistic when the spike is present.  Regardless of the initial input, the mass in the spike 

eventually equilibrates between the two zones for large distances and times downstream; 

when the spike is no longer observable; the solution to the Reichert and Wanner model 

appropriately describes the physical processes of the flow.  These results are in agreement 

with Reichert and Wanner (1991) as discussed in Chapter 2.  Additionally, for both the 

temporal and spatial scales, the effect of the spike is greatly reduced by x′ and t′ = 0.25 and 

completely gone by t′ = 0.41.   
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Figure 4.1: Normalized concentration curves.  The dashed results represent a narrow initial input with ψ = 0.2; 

solid line results represent a spike of recommended width with ψ = 1.5. The left three plots (a-c) are 

concentration curves as a function of time generated for fixed locations: x′ = 0.08; x′ = 0.25; and x′ = 0.41. The 

right three plots are concentration curves as a function of space generated for at fixed times: t′ = 0.08; t′ = 0.25; 

and t′ = 0.41. All six curves were calculated for α = 0.2. 

Effect of Dispersion Parameters 

The parameters α and β control the extent of dispersion in the channel and govern the 

behavior of the concentration distribution as it moves downstream.  Recall that α is the 

fraction of the channel cross section occupied by the stagnant zone and β describes the 

exchange rate between the zones. Table 4.1 gives estimated values of α and β based on the  
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Table 4.1 Representative values of α and β for various rivers based on field measurements 

River 
h 
(m) 

B 
(m) 

U 
(m/s) 

u* 
(m/s) 

K 
(m2/s) 

y  
(m2/s) 

α 
(--) 

β  
(s-1) 

U/β 
 (m) 

Antietam 
(USA) 0.39 16 0.32 0.062 9.3 1.4510

-2  0.25 6.810
-4 4.710

2 

Manganui 
(NZ) 0.4 20 0.19 0.18 6.5 4.3210

-2  0.48 1.310
-3  1.410

2 

Minnesota 
(USA) 2.74 80 0.034 0.0024 22.3 3.9510

-3  0.38 7.410
-6  4.610

3 

Mississippi 
(USA) 3.05 530 0.08 0.0056 19.5 1.0210

-2  0.04 4.310
-7  1.810

5 

Missouri 
(USA) 2.33 183 0.89 0.066 465 9.2310

-2  0.14 3.310
-5 2.610

4 

Muddy 
(USA) 0.81 13 0.37 0.081 13.9 3.9410

-2  0.53 2.810
-3  1.3 10

2 

Stony 
(NZ) 0.63 10 0.55 0.3 13.5 1.1310

-1  0.78 1.310
-2  4.010 

Susquehanna 
(USA) 1.35 203 0.39 0.065 92.9 5.2710

-2  0.10 1.510
-5  2.510

4 

 

relationships given by Eq. 55, 57 and 63and channel geometry and hydraulic measurements 

presented by Rutherford (1994) in Table. 4.2. For these rivers,  varies 0.04 to 0.78. This 

range is larger than the range of 0.07-0.17 found by Nordin and Sabol (1974). The estimated 

values of vary over almost five orders of magnitude. The exchange coefficient qe is directly 

proportional to  and both parameters are inversely proportional to the transverse mixing 

time. In the Mississippi River, which has a large width and relatively low transverse mixing 

rate,  is small. In the Stony River, which has a small width and a high mixing rate,  is 

much larger. The quantity U/ is proportional to the length of the advective zone by a factor 

of α
*
/12.   The values of U/ range several orders of magnitude and correlate to advective 

lengths of a few meters to several kilometers.  
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The effects of varying  and  are shown in Fig. 4.2. To simplify this analysis, only 

time series of concentration are considered.  The tracer-response curves are presented in 

dimensional form because the effects of the parameters, especially β, would be difficult to 

discern in dimensionless form. Increasing  results in a decrease in peak concentration and 

an increase in the spread of the concentration distribution (Fig. 4.2a). This increase in 

dispersion is expected because the velocity gradients are larger when more of the channel is 

occupied by the stagnant zone. As Eq. 106 and 108 show,  affects neither the centroid t nor 

(for large distances from the source) the skewness.  

In some ways the effects of  are the opposite of the effects of (Fig. 4.2b). 

Increasing β results in an increase in peak concentration, a decrease in the spread of the 

concentration distribution, a decrease in the skew of the concentration distribution, and little 

change of the centroid. These qualitative effects agree with Taylor’s analysis. For a given 

tracer parcel, increasing transverse mixing (i.e., β given Eq. 56 and 63) increases the rate the 

parcel samples the velocity gradient, which decreases the differences in the individual parcels 

velocity from the mean parcel velocity; this, in turn, decreases the shear dispersion. The 

decrease in skew results from the decrease in the length of the advective zone as transverse 

mixing (i.e., ) increases.     

Some of these conclusions are supported by Eq. 113, which relates α and β to the 

dispersion coefficient K. Eq. 18 shows that the peak concentration is proportional to K
-1/2

 and 

the cloud width is proportional to K
1/2

.  Therefore, in terms of the parameters of the model of 

Reichert and Wanner (1991), the peak concentration is proportional to 1/2
/ and the cloud 

width is proportional to /1/2
. These more quantitative relationships are illustrated in Fig. 
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4.2: The peak concentration is 3 times smaller for  = 0.3 than for  = 0.1, and it is smaller 

by a factor of 2
1/2

 for  = 0.05 than for  = 0.1. If the concentration was measured at a fixed 

time, t, the same relationships would hold for the spatial variance, skew, and arrival time.  

 

Figure 4.2: Effect of varying α and β. a. Varying  with  = 0.01 s
-1

 fixed. b. Varying β with α = 0.1 fixed. The 

results are based on a hypothetical scenario in which 1 kg of tracer is injected as a Gaussian pulse in the center 

of the river with σ0 = 7.5 m. The mean velocity equal to 0.1 m/s and the concentration is measured 500 m from 

the initial input. The length of the advective zone, Lx for of U  = 0.1 and  = 0.01 s
-1

 is 120m. 
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Behavior of the Moments 

 The spatial and temporal moments of the concentration distribution are analyzed to 

verify the analytical solution to the Reichert and Wanner model. Furthermore, the behavior 

of the moments verifies that the Reichert and Wanner model accurately describes dispersion 

processes, in and out of the advective zone, as described in Chapter 2.   

Spatial Moments 

 

Solutions for M, μx, σx
2
, and γx are plotted with respect to t′ (Fig. 4.3).  Based on the 

expressions given by Eq. 98-102, the following behavior is expected: (1) M is constant for all 

time t; (2) μx grows linearly, and it is proportional to the mean velocityU ; (3) σx
2
 is initially 

non-linear, but for t′ > 1, its growth is linear; and (4) for t′ > 1, the rate of growth in γx is 

negative.  The time t′ = 1 corresponds to the time required to travel through the advective 

zone. These behaviors, all observable in Fig. 4.3, agree with the dispersion processes 

described in Chapter 2, particularly regarding the rate of change in σx
2
 and γx. In particular, 

the slope of the variance curve for large time is 22
U/, or twice the dispersion coefficient 

(Eq. 114). This result confirms the calculation of Reichert and Wanner (1991) using Fourier 

transforms and asymptotic analysis of the transport equations.   

All three solutions to M and μx agree with each other, and the agreement between 

analytical solution and the numerical solution verifies that the expressions given by Eq. 98-

102 are mathematically accurate. However, for σx
2
, and γx the integrated solution diverges 

from the numerical and analytical solution. Calculating the concentration with Eq. 93 

involves numerical integration; this results in some degree of numerical error. 
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Figure 4.3: Evolution of the spatial parameters in time: (a) M0 (kg), (b) center of mass (m), (c) variance (m
2
), 

and (d) skewness (m
3
). Three different solutions are given: the analytical solution computed by Eq. 97-100 

(solid line); the numerical solution computed by MATLAB (marked by ‘o’); and the solution computed by 

integrating the concentration curves calculated with Eq. 89 (marked with ‘x’). All curves were calculated for M0 

=1 kg ,α = 0.1, β = 0.01 s
-1

, U = 0.1m/s and σ0 = 1/  m. 

Minimizing the error requires using small spatial steps, enough time steps to resolve 

the convolutions accurately, and a large enough spatial range to compute the moments. 

Nevertheless, the error in the centroid, variance, and skewness results from the small 

difference of large numbers. Although the error for all four moments is less than 1.5% (Table 

4.2), the error increases for the higher order moments, and the parameters σx
2
and γx, which 

are computed with higher order moments, show pronounced error. The analytical and 

d 
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numerical solutions have negligible differences and that is why they are given by a single 

value in Table 4.2 

Table 4.2: Error in the first four spatial moments. 

  

M0x 

(kg) 

M1x 

(kg m) 

M2x 

(kg m
2
) 

M3x 

(kg m
3
) 

Time 

 (s) 

Analytical 
and 

Numerical 

Integrated 
Analytical 

and 

Numerical 

Integrated 
Analytical 

and 

Numerical 

Integrated 
Analytical 

and 

Numerical 

Integrated 

22 1 1 2.32 2.31 5.84 5.67 15.60 14.40 

44 1 1 4.54 4.54 21.54 21.35 105.00 102.50 

66 1 1 6.77 6.76 47.13 46.93 335.30 331.10 

88 1 1 8.99 8.98 82.58 82.38 771.40 766.00 

111 1 1 11.21 11.21 127.94 127.71 1480.70 1473.30 

133 1 1 13.43 13.43 183.10 182.92 2528.70 2518.60 

155 1 0.99 15.65 15.65 248.24 248.00 3978.50 3967.80 

177 1 0.99 17.87 17.57 323.15 322.96 5896.30 5886.80 

200 1 0.99 20.10 20.10 407.98 407.79 8351.50 8341.40 

Error 

(%) 
-- 0.003 -- 0.004 -- 0.55 -- 1.49 

 

 The behavior of the first four spatial moments in each zones—F0x, S0x, F1x, S1x, F2x, 

S2x, F3x, S3x—provides additional insight in the movement and exchange of tracer as it travels 

downstream.  The expressions for Fnx  (B.25, B.26, B.39, and B.32) and Snx (B.25, B.27, 

B.30, and B.33)  as well as the relationships established in Eq. 20-22, are used to compute the 

solutions for the spatial parameters in each zone—M0f, M0s, μf,  μs, σf
2
, σs

2
, γf and γs (Fig. 4.3). 

After an initial period, the masses in the two zones become equal and constant (Fig. 4.3a).   
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Figure 4.4: Evolution of the spatial parameters for the flowing zone and stagnant zone in dimensionless time, 

t’: (a) M0 (kg), (b) center of mass (m), (c) variance (m
2
), and (d) skewness (m

3
). Solid lines are the solutions for 

the flowing zone and dotted line are solutions for the stagnant zone.  All curves were calculated for Mi =1 kg, α 

= 0.1, β = 0.01 s
-1

, U = 0.1 m/s and σ0 = 1/ 
 
m. 

This duration of this period is defined as the equilibrium time, or teq; this parameter is given 

by the proportionality 

 1
eqt

 




          (120) 

The inverse of the proportionality index is a common term in the solution for C, C1, and C2. 

The center of mass is always greater in the flowing zone (Fig. 4.3b), and the variance is 

greater in the stagnant zone (Fig. 4.3c). The skewnesses for the two zones are equal to one 

a 
b 

c 
d 
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another approximately at teq (Fig. 4.3d). After teq, the skew in the two zones remains negative 

and γs always exceeds γf; the skew in both zones approach zero. These relationships are 

consistent with the spatial concentration curves given in Fig. 4.1 for the wider spike (solid 

line). Because the curves were measured at t′ > 0.08 the mass has already had sufficient time 

to equilibrate between the two zones, and curves are past the zone of temporary positive 

skew in the flowing zone.   

Temporal Moments 

 

The results from the temporal moment analysis can also be used to verify the 

analytical solution. The solutions for Mt, μt, σt
2
, and gt from the analytical approximation 

given by Eq. 101-104 (solid line) and the values obtained through the integration of the 

concentration curve calculated with Eq. 93 (marked with ‘x’) are given in Fig 4.4; both 

solutions agree well. Although the zeroth spatial moment is constant with respect to time, the 

zeroth temporal moment varies close to the source because of the initial condition.  At x=0,

0tM only recognizes half of the initial Gaussian pulse, and therefore, the M0t(0) = 0.5 kg-

s/m
3
. After x ≈ 2σ0, the total mass has passed and  is 1 kg-s/m

3
. If the initial injection 

were in the form of a spike  would be constant for all x. For μt, σt
2
, and gt the 

approximate form is linear with respect to x, and the computed results match well with the 

theoretical predictions (Fig. 4.4b-d).  Reichert and Wanner (1991) showed a delayed increase 

in the variance for their results (Fig. 4 of Reichert and Wanner, 1991); we observe a delayed 

increase in the spatial variance (Fig. 4.3b) but not the temporal variance.    

0tM

0tM
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Figure 4.5:  Evolution of the temporal moments in space: (a) M0t (kg-s/m
3) (b) center of mass, (s), (c) variance, 

(s
2
), and (d) skewness (s

3
). Two different solutions are given: the analytical solution computed by Eq. 101-104 

(solid line); and the solution computed through the integration of the concentration curve calculated with Eq. 89 

(marked with ‘x’) All curves were calculated for Mi = 1 kg, α = 0.1, β = 0.01 s
-1

, U = 0.1 m/s and σ0 = 7.5 m. 
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Comparison to Measured Results 

 The digitized measured results from Day’s analysis were plotted against the predicted 

results from this analysis (referred to as RW results), as well as Taylor’s predicted results for 

two different conditions: constant coefficient and optimized coefficient.  The constant  

Table 4.3: Parameter values for the Reichert and Wanner and Taylor Model 

 
x 

(m) 
U 

(m/s) 




(1/s) 

C0 

(ppm) 
K 

(m2/s) 
M 

(mg) 

Constant Coefficient Values 

All x 0.62 0.13 5.2 10
-3 6.9 10

2 1.2 9.2 10
3 

Optimized Values 

50 0.94 0.04 5.7 10
-3  1.0 10

3 2.2 10
-1 1.4 10

4 

62.5 0.86 0.17 3.7 10
-2 9.0 10

2 5.9 10
-1 1.2 10

4 

75 0.86 0.46 2.1 10
-1  1.3 10

3 7.3 10
-1 1.7 10

4  

87.5 0.84 0.23 3.4 10
-2 1.0 10

3 1.1 1.4 10
4  

100 0.86 0.19 2.4 10
-2 1.0 10

3 1.1 1.4 10
4  

125 0.73 0.21 7.5 10
-3 1.1 10

3 3.1 1.4 10
4 

175 0.74 0.26 2.4 10
-2 9.6 10

2 1.6 1.3 10
4  

200 0.77 0.18 9.6 10
-3 8.3 10

2 2.0 1.1 10
4  

225 0.71 0.22 1.4 10
-2 1.1 10

3 1.8 1.4 10
4  

250 0.68 0.23 1.310
-2  1.0 10

3 2.0 1.4 10
4 

275 0.70 0.18 1.2 10
-2 6.4 10

2 1.3 8.6 10
3 

300 0.70 0.32 3.5 10
-2 7.5 10

2 1.4 1.0 10
4  

350 0.67 0.18 6.7 10
-3 9.4 10

2 2.1 1.210
4  

400 0.66 0.40 5.5 10
-2 9.3 10

2 1.3 1.2 10
4 

450 0.63 0.18 5.2 10
-3 9.1 10

2 2.3 1.2 10
4 

500 0.65 0.13 5.210
-3   6.2 10

2 1.4 8.210
3  

 

coefficient and optimized values for U , α, β, C0, and M, predicted from the moment 

matching analysis described in Chapter 3 are given in Table 4.3. The channel area—a 

parameter required for the models—was set at 0.76 m
2
 based on the dimensions given by 

Day (1975) and Day and Wood (1976). The advective length, Lx, for Thomas Reach is 
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estimated from the constant coefficient values of β and U and Fischer’s coefficient of α
* 

= 

0.4 to be approximately 570 m; therefore, all 16 measurements recorded by Day are within 

the advective zone.    

Representative results for the constant coefficient and the optimized coefficient 

analysis are given in Fig. 4.5.  The peak concentration, Cp, plotted as a function of the time of 

peak, tp, for all five cases is given in Fig. 4.6.  Finally, the ratios for the measured and 

predicted values of Cp, tp, M, μt, σt
2
 and gt were computed for each sub-reach and plotted in 

Fig. 4.7. 

Constant Coefficient Analysis 

 

 The tracer-response curves from the constant coefficient RW analyses arrive late 

compared to the measured data, but the timing improves as x increases because the velocity 

for the constant coefficient analysis is closer to the optimized velocity downstream. This 

point is illustrated in Fig. 4.6b; for x′ < 0.08, the ratio of measured and predicted values of  

is ~0.7; at x′ = 0.2, it is ~0.9; and farther downstream it is ~1. The curves for the constant 

coefficient RW results are roughly the same shape as the measured results, but this 

qualitative assessment is not apparent in the ratios of M, μt, σt
2
 and gt because Taylor’s results 

produce just as good, if not better, predictions (Fig. 4.6a-d). However, the constant 

coefficient RW results predict Cp and tp better than Taylor’s results, especially for small x′.  

The average error for predicting the Cp and tp for the two constant coefficient models is given 

in Table 4.4. The larger error for the time of arrival of the peak concentration is expected 

because of the error in predicting t, the time of arrival of the center of mass. 
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Table 4.4: Average error for Cp and tp for RW and Taylor results 

 Cp Error (%) tp Error (%) 

RW CC 3.1 15.8 

RW OPT 9.9 0.1 

Taylor CC 30.1 28.4 

Taylor OPT 16.2 5.2 
*CC- constant coefficient; *OPT- optimized coefficient 

Optimized Coefficient Analysis 

  

 For most values of x′, the optimized RW results fit the measured concentration curves 

much better than the constant coefficient RW and Taylor results, and for most cases, the 

optimized Taylor results.  However, for small values of x′, the optimized RW results 

overpredict σt
2
 and underpredict Cp until approximately x′ = 0.15. Reichert and Wanner 

(1991) also observed this behavior for small x′ in their results, although the behavior went 

away by x′ = 0.08. The ratios for M, μt,, and gt, from the optimized RW results are 

approximately unity for all 16 locations. Taylor’s optimized results are also approximately 

unity; however, the optimized RW results are better predicting Cp and tp than Taylor’s 

optimized results (Table 4.4). 
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Figure 4.6: Predicted and measured results for the constant coefficient method for x = 87.5, 200, 275 and 450 m. Measured results given by ‘o’; the 

predicted results from this analysis given by solid line and the predicted results from Taylor’s analysis given by dotted line
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Figure 4.7: Predicted and measured results for the optimized coefficient method for x = 87.5, 200, 275 and 450 m. Measured results given by ‘o’; the 

predicted results from this analysis given by solid line and the predicted results from Taylor’s analysis given by dotted line.  
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Figure 4.8: Measured and predicted peak for Cp plotted with respect to tp.  

6
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Figure 4.9: Ratio of measured vs. predicted values for M, μt, σt
2
, gt, Cp, and tp: ‘●’ represents ratios for constant coefficient values from this analysis; ‘ ’ 

represents ratios for optimized values from this analysis. Corresponding open circle and squares are the ratios computed from results from Taylor’s analysis.

6
3
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Model Assessment 

The analytical solution to the Reichert and Wanner model is a verified solution to 

describe transport in the advective zone.  This solution is useful for water quality engineers 

and scientists for modeling and predicting transport of contaminants or nutrients because the 

advective zone in rivers can be several kilometers long (Table 4.1).  The analytical solution 

applies for distances outside the advective zone as well.  After the advective length, the 

variance of the concentration distribution grows linearly at the rate predicted by Reichert and 

Wanner (1991).  This agrees with Taylor’s analysis, as well as several field study results.  

However, as with Taylor’s model and the dead zone model, the skew of the concentration 

distribution predicted with the analytical solution goes to zero.  Field tests in natural rivers do 

not verify that this actually happens (Schmid, 2002).   

The solution requires very little in terms of input, especially when compared with 

alternative advective zone models, such as the two-dimensional streamtube model.  The 

model parameters, α and β, can be empirically estimated from the equations given by 

Reichert and Wanner (1991), or computed from the moments of tracer response curves as 

done in this analysis.  This study illustrates the effect of varying α and β and provides a 

simple physical explanation for their effects on conservation curves.  Applied to the data of 

Day (1975), the model reproduces the tracer response curves better than Taylor model, 

especially in predicting the peak concentration and arrival time (Table 4.3).  The application 

with constant values of α and β performed better in predicting the peak concentration of 

measured results than the application with values optimized to reproduce the first four 

moments at the measured locations.  This performance is encouraging because the constant-
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coefficient model can be applied with only limited field data.    However, the constant 

coefficient model underpredicted the arrival time of the tracer cloud.  If more velocity 

measurements were available, the approximation of U would likely be more representative of 

field conditions and the timing of the predicted curve would likely improve.   

Because the solution is analytical, it avoids the spurious diffusion produced by 

numerical approximation.  However, the solution requires the numerical evaluation of a 

convolution integral.  Effects of the numerical precision are apparent for variance and 

skewness which involve small differences in large numbers. Additionally, the analytical 

solution includes a term that produces a spike in the predicted concentration curves if the 

initial pulse is too narrow.  When this is the case, the initial pulse remains in the flowing zone 

until the mass of the pulse has had sufficient time to equilibrate between the two zones.  A 

spike is present in the predicted concentration curves for C and C1 until this equilibrium 

occurs (approximately at x′ = 0.2).  Reichert and Wanner (1991) also observed this in their 

results.  For a sufficiently wide pulse (ψ > 1.5), the spike is not present in the results.  
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CHAPTER 5: CONCLUSIONS 

Summary 

 Transport within the advective zone cannot be accurately modeled with available one-

dimensional solutions, such as Taylor’s, because they apply only after a balance between 

longitudinal advection and transverse dispersion has been reached.  Two-dimensional 

advective-zone solutions apply within the advective zone but require extensive input from the 

user.  The purpose of this research was to obtain and verify an analytical solution to a one-

dimensional model that applies within the advective zone.  The model used was devised by 

Reichert and Wanner (1991) and involves two parameters: the fraction of the channel 

occupied by the stagnant zone and a transfer coefficient.  These parameters can be estimated 

from empirical equations or a moment-matching scheme.  The later requires tracer response 

curves but results in parameters that are more representative of channel conditions.   

The solution to the model was derived through the application of an iterative Laplace 

transform given by Sneddon (1972). De Smedt (2005) outlined a procedure that used the 

iterative Laplace transform to obtain an analytical solution to the dead zone model; because 

the transport equations to the dead zone model are mathematically similar, this procedure 

was followed closely to obtain the analytical solution to the Reichert and Wanner model.  

The solution, given by Eq. 93, requires numerical integration of the convolution integral.  It 

can be used to calculate concentration as a function of x or t.  The solution was verified 

through an analysis of the temporal and spatial moments. The moments to the Reichert and 

Wanner model are not available in current literature so analytical expressions were obtained 

by solving a set of ODEs with specified boundary conditions (for the spatial case) and with 
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Laplace transforms (for the temporal case).  Numerical solutions for the spatial moments 

were also computed in Matlab; this provided verification that the solutions for the analytical 

spatial moments were correct.  The results from the moment analysis verified the analytical 

solution to the Reichert and Wanner model. 

The model was applied to measurements from a tracer study conducted by Day 

(1975) in a mountain stream.  Several measuring locations were within the advective zone.  

Tracer concentration curves, channel geometry, and hydrologic conditions for the stream 

were presented in Day (1975), Day (1976) and Day and Wood (1976). The concentration 

curves published in Day and Wood (1976) were digitized so the results could be compared 

with the curves predicted from our solution.  Concentration curves predicted with Taylor’s 

solution were also computed to see how well it compares to the measured data and to our 

model.  Our solution reproduced the tracer response curves better than Taylor’s model, 

especially in predicting the peak concentration and arrival time.  The predicted results would 

likely improve with additional field data, but it is encouraging to know that it performs better 

than available solutions given limited data.   

Recommendations and Future Work 

 The impact of this work would be strengthened if the results from this solution could 

be compared with results from a dye study conducted in a meandering channel, such as the 

South Skunk River.  A meandering channel will likely have much different value for α and β, 

and it would be interesting to see if the solution would perform as well, if not better, given 

the different channel conditions.  We would hope to conduct the dye study ourselves, or at 

least work with those conducting the dye study, so the necessary field data could be 
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measured.  Additionally, a numerical solution of this model would be useful and would serve 

as an alternative to this solution when channel conditions cannot be modeled with a single 

parameter.  Finally, additional analytical solutions could be obtained for different initial 

conditions and boundary conditions (e.g., maintained source and injection within the stagnant 

zone). 
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APPENDIX A: MATLAB FUNCTIONS 

 This research required the use of MATLAB to compute the results presented in 

Chapter 4.  Below is a list of the MATLAB codes used to compute results.  The 

corresponding codes are presented on the following pages. 

MATLAB Function Files 

Function 1: Cvst.m: The analytical solution to the RW model with respect to time 

Function 2: Cvsx.m: The analytical solution to the RW model with respect to space 

Function 3: an_moments.m: The analytical solutions to the spatial moments  

Function 4: num_mom_func.m: Generates the set of ODEs for num_moments.m to solve 

Function 5: num_moments.m: The numerical solutions to the spatial moments 

Function 6: temp_moments.m: The analytical approximation to the temporal moments 
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Function 1 

%Name:    Cvst.m 

  
%Purpose: Solves the analytical solution to the Reichert and Wanner model 
%with respect to time for a given locaiton x (for this case, x=100). 

  

  
clear; close all 

  

  
  %Set constants 
   x     = 100;                
   M0    = 1;                 %  Source concentration (mg/L) 
   sig   = 0.5;               %  Parameter describing the spread of the 

initial pulse (m) 
   U     = 0.5;               %  Mean velocity (m/s) 
   A     = 1;                 %  Cross-sectional area (m2) (est. from Day) 
   K     = 1;                 %  Dispersion coefficient (m2/s) 
   alpha = 0.1;               %  Fraction of channel in stagnant zone  
   bta   = 0.01;              %  Model coefficient 
   nt    = 100;               %  Number of points in t 
   ntau  = 1000;              %  Number of points for integrand in 

convolution integral 
   tf1   = 0.1;               %  Factor for the start of the time range 
   tf2   = 3;                 %  Factor for the end of the time range 
   tauf  = 1e-5;              %  Parameter used to avoid singularities in 

calculations 
   C0    =(M0*U)/(sqrt(pi)*sig*(1-alpha)); %Initial Concentration 

  
   %  Plot the initial condition 

  
   xinit = sig*linspace(-4,4); 
   Cinit = C0*exp(-xinit.^2/sig^2); 

  

  
%  Set up time range    

    
   ta = x*(1-alpha)/U; 
   t  = ta*linspace (tf1,tf2,nt)';         %  Time (sec) 

    
%  Compute concentration in the flowing zone    

    
   term11 = exp (-(x-U*t/(1-alpha)).^2/sig^2).*exp(-bta*t/(1-alpha)); 
   term12 = NaN*ones(nt,1); 
   for i = 1:length(t) 
      tau       = t(i)*linspace(tauf,1-tauf,ntau); 
      F1        = exp(-(x-U*tau/(1-alpha)).^2/sig^2); 
      F2        = exp(-bta*tau/(1-alpha)); 
      F3        = exp(-bta*(t(i)-tau)/alpha); 
      F4        = sqrt(bta^2*tau./(alpha*(1-alpha)*(t(i)-tau))); 
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      F5        = besseli(1,2*sqrt(bta^2*tau.*(t(i)-tau)/(alpha*(1-

alpha)))); 
      term12(i) = trapz(tau,F1.*F2.*F3.*F4.*F5); 
   end 
   C1 = C0*(term11 + term12); 

    
%  Compute concentrations in the stagnant zone 

  
  term21 = NaN*ones(nt,1); 

  

    
   term22 = NaN*ones(nt,1); 
  for i = 1:length(t) 
     tau       = t(i)*linspace(tauf,1-tauf,ntau); 
     F1        = exp(-(x-U*(t(i)-tau)/(1-alpha)).^2/sig^2); 
     F2        = exp(-bta*(t(i)-tau)/(1-alpha)); 
     F3        = exp(-bta*tau/alpha); 
     term21(i) = (bta/alpha)*trapz(tau,F1.*F2.*F3); 
  end 

    
   for i = 1:nt 
      tau2      = t(i)*linspace (tauf,1-tauf,ntau)'; 
      F1        = exp(-bta*tau2/alpha); 
      F2        = NaN*ones(ntau,1); 
      for j = 1:ntau 
          tau1  = (t(i)-tau2(j))*linspace(tauf,1-tauf,ntau); 
          G1    = exp(-(x-U*tau1/(1-alpha)).^2/sig^2); 
          G2    = exp(-bta*tau1/(1-alpha)); 
          G3    = exp(-bta*(t(i)-tau2(j)-tau1)/alpha); 
          G4    = sqrt(bta^2*tau1./(alpha*(1-alpha)*(t(i)-tau2(j)-tau1))); 
          G5    = besseli(1,2*sqrt(bta^2*tau1.*(t(i)-tau2(j)-

tau1)/(alpha*(1-alpha)))); 
          F2(j) = trapz(tau1,G1.*G2.*G3.*G4.*G5); 
      end       
      term22(i) = trapz(tau2,F1.*F2); 
   end   

    
   C2 = (C0*bta/alpha)*(term21+term22);    

    
   C= (1-alpha)*C1+alpha*C2; 

    

     
   figure (1); plot (t, C) 
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Function 2 

%Name:    Cvsx.m 

  
%Purpose: Solves the analytical solution to the Reichert and Wanner model 
%with respect to space for a given time t after injection(for this case, 

t=100). 

  

  

  
   clear; close all 

    
%  Set constants 

  
   M     =1; 
   t     = 100; 
   sig   = 1;               %  Parameter describing the spread of the 

initial pulse (m) 
   U     = 0.5;              %  Mean velocity (m/s) 
   A     = 1;              %  Cross-sectional area (m2) (est. from Day) 
   K     = 1;                 %  Dispersion coefficient (m2/s) 
   alpha = 0.2;               %  Fraction of channel in stagnant zone  
   bta   = 0.01;              %  Model coefficient 
   nx    = 100;               %  Number of points in t 
   ntau  = 1000;              %  Number of points for integrand in 

convolution integral 
   xf1   = 0.1;               %  Factor for the start of the time range 
   xf2   = 2;                 %  Factor for the end of the time range 
   tauf  = 1e-5;              %  Parameter used to avoid singularities in 

calculations 
   C0    = (M*U)/(sig*sqrt(pi));            %  Source concentration (mg/L 
   x0    = 2;             %  Injection site (m)  

    
%  Compute initial mass 

  
   xinit = sig*linspace(-8,8); 
   Cinit = C0*exp(-(xinit-x0).^2/sig^2); 
   M0    = (1-alpha)*trapz(xinit,Cinit);                %  (1-alpha) 

accounts for the injection in the flowing zone 

    
%  Set up spatial coordinate 

    
   xp = x0+U*t/(1-alpha); 
   x  = xp*linspace(xf1,xf2,nx)';         %  Distance (m) 

    
%  Compute concentration in the flowing zone    

    
   term11 = exp(-(x-x0-U*t/(1-alpha)).^2/sig^2)*exp(-bta*t/(1-alpha)); 

    
   tau = t*linspace(0,1-tauf,ntau); 
   F2  = exp(-bta*tau/(1-alpha)); 
   F3  = exp(-bta*(t-tau)/alpha); 
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   F4  = sqrt(bta^2*tau./(alpha*(1-alpha)*(t-tau))); 
   F5  = besseli(1,2*sqrt(bta^2*tau.*(t-tau)/(alpha*(1-alpha)))); 

    
   term12 = NaN*ones(nx,1); 
   for i = 1:nx 
       F1        = exp(-(x(i)-x0-U*tau/(1-alpha)).^2/sig^2); 
       term12(i) = trapz(tau,F1.*F2.*F3.*F4.*F5); 
   end 

    
   C1 = C0*(term11 + term12); 

  

    
%  Compute concentrations in the stagnant zone 

  
   term21 = NaN*ones(nx,1); 
   term22 = NaN*ones(nx,1); 

  
   tau = linspace(0,t,ntau); 
   F2  = exp(-bta*(t-tau)/(1-alpha)); 
   F3  = exp(-bta*tau/alpha); 

    
   for i = 1:length(x) 
      F1        = exp(-(x(i)-x0-U*(t-tau)/(1-alpha)).^2/sig^2); 
      term21(i) = trapz(tau,F1.*F2.*F3); 
   end 

    
   for i = 1:nx 
      tau2      = t*linspace(0,1-tauf,ntau)'; 
      F1        = exp(-bta*tau2/alpha); 
      F2        = NaN*ones(ntau,1); 
      for j = 1:ntau 
          tau1  = (t-tau2(j))*linspace(tauf,1-tauf,ntau); 
          G1    = exp(-(x(i)-x0-U*tau1/(1-alpha)).^2/sig^2); 
          G2    = exp(-bta*tau1/(1-alpha)); 
          G3    = exp(-bta*(t-tau2(j)-tau1)/alpha); 
          G4    = sqrt(bta^2*tau1./(alpha*(1-alpha)*(t-tau2(j)-tau1))); 
          G5    = besseli(1,2*sqrt(bta^2*tau1.*(t-tau2(j)-tau1)/(alpha*(1-

alpha)))); 
          F2(j) = trapz(tau1,G1.*G2.*G3.*G4.*G5); 
      end       
      term22(i) = trapz(tau2,F1.*F2); 
   end   

  

    
   C2 = C0*(bta/alpha)*(term21+term22);    
   C = (1-alpha)*C1 + alpha*C2; 

    
 figure (1); plot (x, C) 
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Function 3 

%Name:    an_moments.m 

  
%Purpose: Solves the analytical expressions for the spatial moements 

  

  
clear; close all 

  
a=0.1; 
U=0.1; 
b=0.01; 
M=1; 
s=1/sqrt(pi); 

  

  
 %Calc the Analytical Solutions 

  
l=exp((b*t)/(a*(-1+a))); 

  
U1= -((-a+a*exp((b*t)/(a*(-1+a)))+1)*M)/(-1+a); 

  
U2= -(-1+exp((b*t)/(a*(-1+a))))*M; 

  
U3= -((2*a^4*exp((b*t)/(a*(-1+a)))-2*a^4-4*a^3*exp((b*t)/(a*(-1+a)))... 
+4*a^3-a^2*b*t.*exp((b*t)/(a*(-1+a)))-2*a^2+2*a^2*exp((b*t)/(a*(-1+a)))... 
-b*t*a^2+2*b*t*a-b*t)*M*U)/(b*(-1+a)^2); 

  
U4= -((2*a^3*exp((b*t)/(a*(-1+a)))-2*a^3+3*a^2-3*a^2*exp((b*t)/(a*(-

1+a)))... 
-b*t*a-a*b*t.*exp((b*t)/(a*(-1+a)))-a+a*exp((b*t)/(a*(-1+a)))... 
+b*t)*M*U)/(b*(-1+a)); 

  
U5= -(1/(b^2*(-1+a)*(-2*a+a^2+1)))... 
*((-54*a^5*U^2+6*l*a^3*U^2-42*l*a^6*U^2+12*a^4*U^2*l.*t.*b... 
-6*a^3*U^2*l.*t.*b-3*s^2*b^2*a-s^2*b^2*a^3+3*s^2*b^2*a^2+30*a^4*U^2... 
+s^2*b^2*30-6*a^3*U^2-6*a^5*U^2*l.*t.*b+a^3*U^2*l.*t.^2*b^2-

18*a^3*U^2*t*b... 
+18*a^4*U^2*t*b-

6*a^5*U^2*t*b+6*a^2*U^2*t*b+U^2*t.^2*b^2+3*U^2*t.^2*b^2*a^2... 
-U^2*t.^2*b^2*a^3-3*U^2*t.^2*b^2*a+42*a^6*U^2-12*a^7*U^2+l*s^2*b^2*a... 
-2*l*s^2*b^2*a^2+l*s^2*b^2*a^3+54*l*a^5*U^2+12*l*a^7*U^2-30*l*a^4*U^2)*M); 

  
U6 = -(1/((-1+a)^2*b^2))*((-b^2*U^2*t.^2-

b^2*U^2*t.^2*a^2+2*b^2*U^2*t.^2*a... 
-36*a^5*U^2*l-s^2*b^2+16*a^3*U^2-2*a^2*U^2-38*a^4*U^2-2*a*l.*s^2*b^2... 
+a^2*l.*s^2*b^2+36*a^5*U^2-12*a^6*U^2-6*a^4*U^2*b*l.*t+l.*s^2*b^2... 
+2*s^2*b^2*a-s^2*b^2*a^2+2*l.*a^2*U^2-10*b*a^2*U^2*t+14*b*a^3*U^2*t... 
-6*b*a^4*U^2*t-4*a^2*U^2*l.*t.*b+a^2*U^2*l.*t.^2*b^2+2*b*a*U^2*t... 
+12*a^6*U^2*l+38*a^4*U^2*l-16*a^3*U^2*l+10*a^3*U^2*b*l.*t)*M); 

  
U7 = -U*M*(-120*a^10*U^2-600*a^9*exp(b*t/(a*(-1+a)))... 
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*U^2-24*exp(b*t/(a*(-1+a)))*b^2*s^2*a^3-12*b^2*U^2*t.^2*a^6... 
-12*b^2*U^2*t.^2*a^2+48*b^2*U^2*t.^2*a^5-72*b^2*U^2*t.^2*a^4... 
-60*b*a^8*U^2*t-156*b*a^4*U^2*t+264*b*a^7*U^2*t+600*a^9*U^2... 
-24*a^4*U^2-456*b*a^6*U^2*t+24*b*a^3*U^2*t+48*b^2*U^2*t.^2*a^3... 
+1224*a^8*exp(b*t/(a*(-1+a)))*U^2+744*a^6*exp(b*t/(a*(-1+a)))... 
*U^2+120*a^10*exp(b*t/(a*(-1+a)))*U^2+6*exp(b*t/(a*(-1+a)))... 
*b^2*s^2*a^2+384*b*a^5*U^2*t-60*a^8*U^2*b*l.*t-a^4*U^2*b^3*l.*t.^3... 
+12*a^6*U^2*b^2*l.*t.^2-1224*a^8*U^2+1296*a^7*U^2-U^2*t.^3*b^3*a^4... 
-216*a^5*exp(b*t/(a*(-1+a)))*U^2+24*a^4*exp(b*t/(a*(-1+a)))*U^2... 
+216*a^5*U^2-744*a^6*U^2-U^2*t.^3*b^3+4*U^2*t.^3*b^3*a+4*U^2*t.^3*b^3... 
*a^3-6*U^2*t.^3*b^3*a^2-36*a^4*U^2*b*l.*t-36*b^2*s^2*a^4+24*b^2*s^2*a^3... 
-6*b^2*s^2*a^2+6*a^3*l.*t.*b^3*s^2-3*a^2*l.*t.*b^3*s^2-

3*a^4*l.*t.*b^3*s^2... 
-1296*a^7*l.*U^2-24*l.*b^2*s^2*a^5+36*l.*b^2*s^2*a^4+6*a^6*l.*b^2*s^2... 
-288*a^6*U^2*b*l.*t+216*a^7*U^2*b*l.*t+168*a^5*U^2*b*l.*t-

24*a^5*U^2*b^2... 
*l.*t.^2+12*a^4*U^2*b^2*l.*t.^2+24*b^2*s^2*a^5-6*b^2*s^2*a^6-

3*b^3*t.*s^2... 
+12*b^3*t.*a*s^2-3*b^3*t.*s^2*a^4+12*b^3*t.*s^2*a^3-18*b^3*t.*s^2*a^2)... 
/((-3*a^2+a^3+3*a-1)*(-1+a)*b^3); 

  
U8 = -U*M*(120*a^9*l.*U^2+27*l.*b^2*s^2*a^3-3*b^2*U^2*t.^2*a... 
+21*b^2*U^2*t.^2*a^2-

12*b^2*U^2*t.^2*a^5+39*b^2*U^2*t.^2*a^4+222*b*a^4*U^2*t... 
-60*b*a^7*U^2*t-120*a^9*U^2+90*a^4*U^2-6*a^3*U^2+228*b*a^6*U^2*t... 
-66*b*a^3*U^2*t-45*b^2*U^2*t.^2*a^3-540*a^8*l.*U^2-882*a^6*l.*U^2-

15*l.*b^2*s^2*a^2... 
+3*l.*a*b^2*s^2-330*b*a^5*U^2*t+540*a^8*U^2-972*a^7*U^2-a^3*U^2*l.*t.^3... 
*b^3+6*b*a^2*U^2*t+414*a^5*l.*U^2-90*a^4*l.*U^2+6*a^3*l.*U^2-

3*a*l.*t.*b^3... 
*s^2-414*a^5*U^2+882*a^6*U^2+U^2*t.^3*b^3-3*U^2*t.^3*b^3*a-

U^2*t.^3*b^3*a^3+3... 
*U^2*t.^3*b^3*a^2-3*a*b^2*s^2+108*a^4*U^2*b*l.*t-18*a^3*U^2*b*l.*t... 
+21*b^2*s^2*a^4-27*b^2*s^2*a^3+15*b^2*s^2*a^2-3*a^3*l.*t.*b^3*s^2... 
+6*a^2*l.*t.*b^3*s^2+972*a^7*l.*U^2+6*l.*b^2*s^2*a^5-21*l.*b^2*s^2*a^4... 
+192*a^6*U^2*b*l.*t-60*a^7*U^2*b*l.*t-

222*a^5*U^2*b*l.*t+12*a^5*U^2*b^2*l.*t.^2... 
+9*a^3*U^2*b^2*l.*t.^2-21*a^4*U^2*b^2*l.*t.^2-

6*b^2*s^2*a^5+3*b^3*t.*s^2... 
-9*b^3*t.*a*s^2-3*b^3*t.*s^2*a^3+9*b^3*t.*s^2*a^2)/((-3*a^2+a^3+3*a-

1)*b^3); 

  

  
M0_a = (1-a)*U1+a*U2; 
M1_a = (1-a)*U3+a*U4; 
M2_a = (1-a)*U5+a*U6; 
M3_a = (1-a)*U7+a*U8; 
mu_a = M1_a./M0_a; 
var_a = M2_a./M0_a - mu_a.^2; 
skew_a= (M3_a./M0_a-3*mu_a.*var_a-mu_a.^3.)./(var_a.^(3/2)); 
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Function 4 

%Name:    num_mom_func.m 

  
%Purpose: Sets up the ODEs for the numerical spatial moment analysis 

  
         function du= num_mom_test(t,u,flag,a,U,b) 

          
         du(1)=-(b/(1-a))*(u(1)-u(2)); 
         du(2)=(b/a)*(u(1)-u(2)); 

          
         du(3)=-(b/(1-a))*(u(3)-u(4))+(U*u(1))/(1-a); 
         du(4)=(b/a)*(u(3)-u(4)); 

          
         du(5)=-(b/(1-a))*(u(5)-u(6))+(2*U*u(3))/(1-a); 
         du(6)=(b/a)*(u(5)-u(6)); 

          
         du(7)=-(b/(1-a))*(u(7)-u(8))+(3*U*u(5))/(1-a); 
         du(8)=(b/a)*(u(7)-u(8)); 

         
         du=du'; 

  

  
         end 
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Function 5 

%Name:    num_moments.m 

  
%Purpose: Solves the set of ODEs from num_mom_func.m with ode45 

  

  
clear; close all 

  

  
%this is the num 

  
a=0.1; 
U=0.1; 
b=0.01; 
M=1; 
s=1/sqrt(pi); 

  

   
tend=400; 
u0=[M/(1-a),0,0,0,((s^2)*M)/(1-a),0,0,0];     
[t,u]=ode45('num_mom_func',[0 tend],u0,[],a,U,b); 

  

  
 M0_n=u(:,1)*(1-a)+ a*u(:,2); 
 M1_n= u(:,3)*(1-a)+ a*u(:,4); 
 M2_n= u(:,5)*(1-a)+ a*u(:,6); 
 M3_n= u(:,7)*(1-a)+ a*u(:,8); 
 mu_n= M1_n./M0_n; 
 var_n= M2_n./M0_n - mu_n.^2; 
 skew_n= (M3_n-3./M0_n*mu_n.*var_n-mu_n.^3.)./(var_n.^(3/2)); 
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Function 6 

%Name:    temp_moments.m 

  
%Purpose: Solves the analytical approximations for the temporal moments 

  
clear; close all 

  
%Load the temporal moments computed by integrating the solution 

  
a=0.1; 
U=0.1; 
b=0.01; 
M=1; 
s= 7.5; 
C0= (M*U)/(sqrt(pi)*s*(1-a)); 
x=linspace(0, 100); 

  

  
%Calculate the temporal moments analytically  

  

  
F0t= (((1-a)*(C0*s))/U)*sqrt(pi)*(1-(1/2)*erfc(x/s)); 
S0t= (((1-a)*(C0*s))/U)*sqrt(pi)*(1-(1/2)*erfc(x/s)); 
M0t_a= (1-a)*F0t+a*S0t; 

  
F1t=(1-a)^2*((sqrt(pi)*C0*s)/U)*(x/U); 
S1t=((C0*s*sqrt(pi)*(1-a)^2)/U)*(x/U)+((C0*s*sqrt(pi))/U)*(a/b)*(1-a); 
M1t_a= (1-a)^2*((sqrt(pi)*C0*s)/U)*(x/U)+(a^2/b)*(1-

a)*((C0*s*sqrt(pi))/U); 

  

  

  
mut_a=(x/U)+a^2/b; 
vart_a= 2*((a^2)/(U*b))*x+(a^3/b^2)*(2-a); 
gt_a= (((6*a^3)/(U*b^2))*x+ 6*(1-a)*(a^4/b^3)+(2*a^6)/(b^3)); 
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APPENDIX B: DERIVATION OF THE TEMPORAL MOMENTS 

Two different solutions to the temporal moments of the Reichert and Wanner model 

were derived—the full solution with a Gaussian pulse initial condition and an approximate 

solution with a spike initial condition. The behavior of the two solutions is equal after an 

initial time period (x ≈ 2σ0).  The expressions from the latter derivation are in a much more 

simplified form than the full solution so they were the only expressions presented in Chapter 

3; the corresponding results from these expressions are presented in Chapter 4.  Both 

derivations are presented in this section, however.  

Full Solution 

 Nordin and Troutman (1980) used a relation between the Laplace transform and the 

moments of a distribution to compute the temporal moments for the dead zone model.  If 

  
0

( , ) ( , ) ( , )stC x s L C x t e C x t dt



         (B.1) 

Using this relationship, the zeroth temporal moment can be written as  

 0

0
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         (B.2) 

Taking the derivative of (B.2) gives 
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The n
th

 moment can be written as 
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To compute the zeroth temporal moment, the derivative is raised to the zeroth power; this 

gives ( , )C x s which was computed in Chapter 3.  In Chapter 3, the Laplace transform of C1 

was defined as 

 1( , ) ( , ')C x s N x s         (B.6) 
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The transform of (B.8) is 
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where 
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Substituting 's  into (B.9) gives the transform of C1 

 
  

     

22 2 2
0

2
01

2

0 0
1 0

1 1 0

1

4 1 1 1 1

( , ) ( , ')
2 2 1 1

x
s s

s sU

x
C x s N x s C erfc s

U U s

e

    

        

   

    

    
                     

  
             (B.11) 



www.manaraa.com

81 

 

Setting s = 0, the zeroth temporal moment in the flowing zone, F0t, is derived  
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Given the definition for the transform of C2 from Chapter 3 (Eq. 68) and setting s = 0, the 

zeroth temporal moment in the stagnant zone is computed.  It is equal to F0t .  The composite 

zeroth moment 
0tM  is 

   0
0 0

0

1
1 1

2
t

x
M C erfc

U


 



  
    

   

     (B.13) 

When x > 2σ0 
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Using the definition in Eq. B.5 and the procedure applied to derive the zeroth temporal 

moment, the expressions for the first, second and third temporal moments are derived.  The 
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Approximate Solution 

 When the initial input is in the form of a spike, instead of a Gaussian pulse, (B.11) 

becomes 
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The same procedure used to derive the full solution is used to derive the expressions for the 

approximate solution.  The approximate solutions to 0 0 1 1 1 2 2 2 3 3, , , , , , , , , ,t t t t t t t t t tF S F S M F S M F S

and M3t are 



www.manaraa.com

85 

 

 

 
0 0 0

1
t t tF S M M

U


  

       (B.25) 

 

 
1

1
t

M x
F

U U




        (B.26) 

 

 
1

1
1t

M x U
S

xU U

 



 
  

 
       (B.27) 

 

  2

1

1
1t

M x U
M

xU U

 



 
  

 
      (B.28) 

 

 
 2

2 2

1
2t

M x
F U x

U U


 




 

      (B.29) 

 

   22 2 2 2

2 3 2

1
2 2t

M
S xU x U

U


   




  

     (B.30) 

 

   22 2 2 3

2 3 2

1
4 2t

M
M xU x U

U


   




  

     (B.31) 

 

   23 2 2 2

3 4 2

1
6 6t

M x
F U xU x

U


   




  

     (B.32) 

 

  



23 2 2 2 3 3

3 4 3

2 32 2 2 3

1
12 6

3 6 6

t

M
S xU x U x

U

x U x U U


    



    


  

  

    (B.33) 

 

  



23 2 2 2 3 3

3 4 3

2 34 4

1
12 9

6 6

t

M
M xU x U x

U

x U U


    



  


  

 

    (B.24) 

These expressions are used to create Eq. 105-108.
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